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Abstract

This thesis concerns the computational problem of finding one Nash equilibrium of a

bimatrix game, a two-player game in strategic form. Bimatrix games are among the most

basic models in non-cooperative game theory, and finding a Nash equilibrium is important

for their analysis.

The Lemke–Howson algorithm is the classical method for finding one Nash equilib-

rium of a bimatrix game. In this thesis, we present a class of square bimatrix games

for which this algorithm takes, even in the best case, an exponential number of steps in

the dimension d of the game. Using polytope theory, the games are constructed using

pairs of dual cyclic polytopes with 2d suitably labelled facets in d-space. The construc-

tion is extended to two classes of non-square games where, in addition to exponentially

long Lemke–Howson computations, finding an equilibrium by support enumeration takes

exponential time on average.

The Lemke–Howson algorithm, which is a complementary pivoting algorithm, finds

at least one solution to the linear complementarity problem (LCP) derived from a bimatrix

game. A closely related complementary pivoting algorithm by Lemke solves more general

LCPs. A unified view of these two algorithms is presented, for the first time, as far as we

know. Furthermore, we present an extension of the standard version of Lemke’s algorithm

that allows one more freedom than before when starting the algorithm.
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Chapter 1

Introduction

In Section 1.1, we briefly describe some background material required for understanding

this introductory chapter. In Section 1.2, we describe the contribution of this thesis. In

Section 1.3, we describe the structure of this thesis, and give details of where some of the

results have already been published. In Section 1.4, we describe related work.

1.1 Background

This thesis concerns the computational problem of finding one Nash equilibrium of a

bimatrix game; we call this problem NASH. Bimatrix games are among the most basic

models in non-cooperative game theory, and finding a Nash equilibrium is important for

their analysis.

A bimatrix game is a two-player game in strategic form. The strategic form is spec-

ified by a finite set of players, a finite set of “pure” strategies for each player, and a (for

simplicity of input, integer) payoff for each player for each strategy profile (which is a tu-

ple of strategies, one for each player). The game is played by each player independently

and simultaneously choosing one strategy, whereupon the players receive their respective

payoffs. A player is allowed to randomize according to a probability distribution on his

pure strategy set, which defines a mixed strategy for that player. Players are then interested

in maximizing their expected payoffs. A Nash equilibrium is a profile of (possibly mixed)

strategies such that no player can gain by unilaterally choosing a different strategy, where
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the other strategies in the profile are kept fixed. Every strategic form game has at least one

equilibrium in mixed strategies (Nash (1951)). For two players, the game is specified by

two m×n integer matrices A and B, where the m rows are the pure strategies i of player 1

and the n columns the pure strategies j of player 2, with resulting matrix entries ai j and

bi j as payoffs to player 1 and 2, respectively. This is called a bimatrix game (A,B).

In computer science, the running time of a program is measured as a function of the

size of the input; for the problem NASH, this is the number of bits required to specify the

payoff matrices. Problems that can be solved in polynomial running time are considered

as “computationally tractable” (see Garey and Johnson (1979), Papadimitriou (1994a)).

At present, it is not known whether NASH can be solved in polynomial time. This has been

called one of the two “most important concrete open questions” in theoretical computer

science (Papadimitriou (2001)). A recent preprint of Chen and Deng (2005b), discussed

in Section 5.1, suggests that a polynomial-time algorithm for NASH is unlikely to exist.

Currently, not even a subexponential algorithm for the problem is known.

An equilibrium of a zero-sum bimatrix game (A,B), where B = −A, is the solution

to a linear program (LP). Linear programs can be solved in polynomial time by the ellip-

soid method or interior point methods (see Todd (2001) for a survey). No such method

is known for finding Nash equilibria. One difficulty is that the set of Nash equilibria of

a bimatrix game is generally not convex. Problems relating to that set tend to be com-

putationally difficult, for example the problem of deciding whether a game has a unique

Nash equilibrium (Gilboa and Zemel (1989), Conitzer and Sandholm (2003), Codenotti

and Štefankovič (2005)). Finding all equilibria is therefore computationally intractable

for larger games.

1.2 The contribution of this thesis

A standard method for NASH is the algorithm due to Lemke and Howson (1964), here

called the LH algorithm. The algorithm, which is described in Section 2.2, provides an

elementary and constructive proof that a bimatrix game has at least one Nash equilib-

rium. The first result of this thesis is a class of square games where this algorithm takes

an exponential number of steps, which shows that the algorithm is not polynomial. The
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LH algorithm is a pivoting method related to the simplex algorithm for linear program-

ming (Dantzig (1963)). Klee and Minty (1972) constructed linear programs for which the

simplex method with a certain pivot rule takes an exponential number of pivoting steps;

similar examples have been constructed for other pivot rules (see Klee and Kleinschmidt

(1987), Todd (2001)). The LH algorithm has no choice of its pivot rule, but a free choice,

corresponding to a pure strategy of one of the players, of its first step (the first variable

“to enter the basis”). In the games constructed here, the running time of the LH algorithm

is exponential even for the best first choice of the algorithm. To our knowledge, these are

the first examples of this kind. Finding a Nash equilibrium in subexponential time must

therefore go beyond this classic pivoting approach.

Our construction uses the theory of polyhedra (see for example Ziegler (1995) or

Grünbaum (2003)). This geometric view gives a good insight into the structure of Nash

equilibria of two-player games (see von Stengel (2002)). For each player, the set of his

mixed strategies together with the best response payoff to the other player is described by

a polyhedron. A vertex of each polyhedron is obtained by converting some inequalities

into equations, which describe the support of a mixed strategy and its best responses.

An equilibrium is given by a “complementary” vertex pair. The LH algorithm traverses

“almost complementary” edges of the polyhedra until it reaches an equilibrium.

We use a standard construction of “dual cyclic polytopes”. These are polyhedra for

which the vertex-defining inequalities are known in arbitrary dimension (Gale (1963)).

This purely combinatorial information can also be used to construct bimatrix games with

many equilibria (von Stengel (1999)). In our construction, since both players have dual

cyclic polytopes as their best response polyhedra, we call these m× n games the double

cyclic polytope games Γ(m,n), and in particular the square games just mentioned Γ(d,d).

The LH paths are defined purely combinatorially in terms of the supports of, and best

responses to, the mixed strategies that they trace. These correspond to known binary

patterns that encode the vertices of dual cyclic polytopes. Linear recurrences for the

various path lengths give rise to their exponential growth. For d = 2,4,6, . . ., the length of

the longest path for a d×d game Γ(d,d) is given by every third Fibonacci number, which

is proportional to ϕ3d/2, where ϕ = 1.618... is the Golden Ratio. Shorter path lengths are

obtained by certain sums of these numbers, the shortest length being proportional to ϕ3d/4.
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The construction described so far is closely related to Morris (1994), who used dual

cyclic polytopes to produce exponentially long “Lemke paths” on polytopes. These paths

correspond to a “symmetric” version of the LH algorithm, which finds symmetric equilib-

ria of a symmetric game (although Morris did not consider this interpretation). The games

obtained from Morris’s construction have additional nonsymmetric equilibria. The stan-

dard LH algorithm always terminates, very quickly, at such a nonsymmetric equilibrium.

These games are therefore not directly useful for our purpose of providing “challenge in-

stances” for the problem NASH. After we found our construction of long LH paths for

the bimatrix games Γ(d,d), McLennan and Tourky (2005) noted an ingenious alterna-

tive proof of exponentially long LH paths based on Morris’s construction and imitation

games, as explained in Section 3.7. An imitation game is a square game (A, I), where

I is the identity matrix. It is closely related to the symmetric game (A,A⊤), since its

symmetric equilibria correspond to the equilibrium strategies of player 2 in the imitation

game.

The square games Γ(d,d) have a unique, completely mixed equilibrium, as do the

square games derived from Morris (1994) by McLennan and Tourky (2005). In both

cases, the LH algorithm needs exponential time to find this equilibrium. However, for both

games the equilibrium is quickly found by a simple algorithm called support enumeration

(e.g., Dickhaut and Kaplan (1991), Porter, Nudelman, and Shoham (2004), or Bárány,

Vempala, and Vetta (2005)). The support of a mixed strategy is the set of pure strategies

that it plays with positive probability. All pure strategies in the support of an equilibrium

strategy must have equal expected payoff. If, as here, the game is nondegenerate, the

corresponding linear equations uniquely determine the mixed strategy probabilities of the

other player. Support enumeration considers possible supports for both players and the

solutions to the respective linear equations, and checks if these define an equilibrium. In

a square game, it is natural to test the set of all pure strategies as an equilibrium support,

which gives the equilibrium in the two classes of square games mentioned so far. That

is, both our square games Γ(d,d) and the square imitation games derived from Morris’s

construction are not “hard to solve” by other methods.

Therefore, we extend each of these two constructions to give two classes of non-

square games where both the LH algorithm and, on average, support enumeration are
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exponential. It appears that no general algorithm for NASH is known that can solve either

of these classes of games efficiently, so we consider them both as classes of hard-to-solve

bimatrix games. The first class are the d× 2d double cyclic polytope games Γ(d,2d),

with the columns of the payoff matrices randomly permuted. For the second class, we

construct 3d×d games T(d) with one dual cyclic polytope and a simplotope, which is a

product of simplices, here of d tetrahedra. This construction is inspired by Morris (1994)

and McLennan and Tourky (2005). We call these games triple imitation games, due to

their connection to imitation games.

One reason for presenting two classes is that there is a tradeoff between them. The

games Γ(d,2d) have the longer LH paths, whereas the triple imitation games T(d) will

take a greater expected number of attempts to find a Nash equilibrium by support enu-

meration. A further reason for including triple imitation games is the use of a new kind of

polytope, the simplotope, as one of the best response polytopes for constructing games.

Another method of finding equilibria is to enumerate the vertex pairs of the best re-

sponse polyhedra, and test them for the equilibrium property. In general, the number of

vertices is exponential. However, there are many vertex enumeration methods (see e.g.

Avis and Fukuda (1992) and the references therein), and we do not analyse whether they

solve our games Γ(d,2d) or T(d) in expected exponential time, although we suspect that

this is the case. Knowing the exact way that the games Γ(d,2d) and T(d) are constructed,

it is possible to “unscramble” the hidden support by special pivoting steps, and thus arrive

quickly at an equilibrium, as described in Section 3.6 for the games Γ(d,2d). However,

this very specialized method only applies to these constructions, and does not compute an

equilibrium for other games.

The Nash equilibria of a bimatrix game are solutions to a linear complementarity

problem (LCP); see Cottle, Pang, and Stone (1992). The algorithm by Lemke (1965)

is closely related to the LH algorithm. Whereas the LH algorithm only solves bimatrix

games, Lemke’s algorithm can solve more general LCPs. In Chapter 4, a unified view of

these two algorithms is presented, for the first time, as far as we know. Furthermore, we

present an extension of the standard version of Lemke’s algorithm that allows one more

freedom than before when starting the algorithm.

13



1.3 The structure of this thesis

In this section, we describe the structure of this thesis, and give details of where some of

the results of the thesis have already been published.

Chapter 2 gives the relevant background material. In Section 2.1, we describe the best

response condition, leading to the characterization of Nash equilibria of bimatrix games

as completely labelled (complementary) vertex pairs of the best response polytopes. In

Section 2.2, we describe a modification of the LH algorithm that finds a symmetric equi-

librium of a symmetric bimatrix game. We explain this modified and simpler LH method

because, to our knowledge, except in Savani and von Stengel (2004; 2006), it has not

been described earlier (although it is straightforward), and because it leads naturally to

the usual LH method.

In Chapter 3, we present two classes of hard-to-solve bimatrix games. In Section 3.2,

we describe the well-understood dual cyclic polytopes, and their construction using the

moment curve. Then, in Section 3.3, we present the class of games Γ(m,n). In Sec-

tion 3.4, we show that for the square games Γ(d,d) the length of the shortest LH path

grows exponentially with d. In Section 3.5, we show that if we randomly permute the

columns of the games Γ(d,2d), in addition to exponentially long LH computations, find-

ing an equilibrium by support enumeration takes on average exponential time. The results

in Sections 3.4 and 3.5 have been published in Savani and von Stengel (2004; 2006). In

Section 3.6, we describe how to “unscramble” the random permutation and quickly find

an equilibrium of Γ(d,2d), if the rest of the construction is known. This result has ap-

peared in Savani (2004). In Section 3.7, which is taken from Savani and von Stengel

(2006), we explain how to interpret the “Lemke paths” of Morris (1994) as paths of the

symmetric LH algorithm described in Section 2.2. All ordinary LH paths for these sym-

metric games are very short, and lead to nonsymmetric pure-strategy equilibria. We then

explain the use of imitation games in this context, as suggested by McLennan and Tourky

(2005), giving another class of square games with exponentially long LH paths. Extend-

ing this, we present in Section 3.8 the new d×3d triple imitation games T(d), which (like

the games Γ(d,2d)) are hard to solve by both support enumeration and the LH algorithm.

The time complexity of the LH algorithm and support enumeration for all the mentioned

classes of games is summarized in Figure 3.10.
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In Chapter 4, we describe the algorithm by Lemke (1965). We then give a new, unified

view of Lemke’s algorithm and the LH algorithm, and an extension of Lemke’s algorithm

that allows one more freedom when starting the algorithm than before.

In Chapter 5, we conclude our findings and discuss open questions. Appendix A gives

a number of supplementary results. In Section A.1, we describe how to generate the

square games Γ(d,d), and give an example of such a game. In doing so, we describe a

second way to construct cyclic polytopes, the well-known trigonometric moment curve

(see Ziegler (1995, p. 75f) or Grünbaum (2003, p. 67)). In Section A.2, we give tables of

path lengths for all the constructed games, as well as examples of paths. A list of symbols

is given at the end.

1.4 Related work

Our construction of the games Γ(d,d) and T(d) is related to Morris (1994). There, Mor-

ris showed that Lemke paths cannot be used to address the Hirsch conjecture (Klee and

Kleinschmidt (1987)). This famous conjecture states a tight linear bound on the short-

est path between any two vertices of a polytope, for which the best known bounds are

not even polynomial (Kalai and Kleitman (1992)). A polynomial pivoting algorithm for

NASH (or even for finding a symmetric Nash equilibrium of a symmetric game, using the

symmetrization in (2.3) below), applied to zero-sum games, would answer that question

as well.

Equilibria of zero-sum games are the solutions to an LP. The results by Murty (1980)

and Goldfarb (1983; 1994) suggest that Lemke’s algorithm can be exponential even when

solving a zero-sum game. However, these results do not extend to the LH algorithm. First,

the examples by Murty and Goldfarb define a single path of Lemke’s algorithm, which

is not an LH path. Second, even if they could be modified to define an LH path, the LP

defines a cube like in the construction by Klee and Minty (1972). The endpoints of the

exponentially long path on the cube are joined by a single edge. Hence, even if one could

make the LH algorithm mimic that path, another LH path would be very short.

As mentioned above, the Nash equilibria of a bimatrix game are solutions to a linear

complementarity problem (LCP). In Murty (1978) and Fathi (1979), LCPs are constructed
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where for certain pivoting methods one path is exponentially long, in analogy to Klee and

Minty (1972). In our case, all LH paths are exponentially long. Moreover, the examples

of Murty and Fathi do not arise from games.

Equilibrium enumeration methods (see for example Vorob’ev (1958), Kuhn (1961),

Winkels (1979), Jansen (1981), Audet, Hansen, Jaumard, and Savard (2001), and the

survey in von Stengel (2002)) can be modified to terminate once the first equilibrium

is found, and should be tested on the games constructed in this thesis as well. These

methods are designed to produce all rather than just one equilibrium, which cannot even

be polynomial in the output size (unless P = NP), since deciding if a game has only

one Nash equilibrium is NP-complete (Gilboa and Zemel (1989)). There is no a priori

reason to assume that these methods are good for finding just one equilibrium. Similarly,

general algorithms for finding equilibria in games with any number of players are not

likely to be fast. These include path-following algorithms (Garcia and Zangwill (1981)),

which typically specialize to pivoting in the two-player case (for a generalization of LH

to more than two players see Rosenmüller (1971) and Wilson (1971)), and algorithms

for approximating fixed points (e.g. McKelvey and McLennan (1996) and Papadimitriou

(1994b)).
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Chapter 2

Bimatrix Games, Polytopes, and the

Lemke–Howson algorithm

2.1 Nash equilibria and the best response condition

We use the following notation. Given a bimatrix game (A,B) with m×n payoff matrices A

and B, a mixed strategy for player 1 is a vector x in Rm with nonnegative components that

sum to one. A mixed strategy for player 2 is such a vector y in Rn. All vectors are column

vectors; the row vector corresponding to x is written as the transpose x⊤. The support of a

mixed strategy is the set of pure strategies that have positive probability. A best response

to y is a mixed strategy x of player 1 that maximizes his expected payoff x⊤Ay, and a best

response to x is a mixed strategy y of player 2 that maximizes her expected payoff x⊤By.

A Nash equilibrium is a pair of mutual best responses. Best responses are characterized

by the following combinatorial condition, which we state only for a mixed strategy x of

player 1.

Lemma 2.1 (Nash (1951)) Let x and y be mixed strategies of player 1 and 2, respectively.

Then x is a best response to y if and only if all strategies in the support of x are pure best

responses to y.
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Proof: Let (Ay)i be the ith component of Ay, which is the expected payoff to player 1

when playing row i. Let u = maxi(Ay)i. Then

x⊤Ay = ∑
i

xi(Ay)i = u−∑
i

xi(u− (Ay)i).

Since the sum ∑i xi(u− (Ay)i) is nonnegative, x⊤Ay ≤ u. The expected payoff x⊤Ay

achieves the maximum u if and only if that sum is zero, that is, if xi > 0 implies (Ay)i = u,

as claimed.

A game (A,B) is symmetric if A = B⊤, so it does not change when the players change

roles. The game of “chicken” with A = B⊤ =

(
2 2

4 1

)
is an example. Its equilibria, in

terms of the probability vectors, are the bottom left pure strategy pair
(
(0,1)⊤,(1,0)⊤

)
with expected payoffs 4,2 to players 1 and 2, respectively, the top right pure strategy pair(
(1,0)⊤,(0,1)⊤

)
with expected payoffs 2,4, and the mixed strategy pair

(
(1/3,2/3)⊤,

(1/3,2/3)⊤
)

with expected payoffs 2,2. The mixed strategy equilibrium is the only sym-

metric equilibrium. Its probabilities are uniquely determined by the condition that the

pure strategies in the support of the opponent’s strategy must both be best responses (by

Lemma 2.1) and hence have equal expected payoff.

In a mixed equilibrium, the probabilities are uniquely given by the pair of supports

if the corresponding sub-matrices have full rank; the support sizes are then equal. This

holds if the game is nondegenerate, defined by the property that the number of pure best

reponses to any mixed strategy never exceeds the size of its support (see von Stengel

(2002) for a detailed discussion). The LH algorithm can be extended to degenerate games

by standard lexicographic perturbation techniques, which we discuss in Section 4.3. All

of the games we construct are nondegenerate.

By Lemma 2.1, an equilibrium is given if any pure strategy of a player is either a

best response (to the opponent’s mixed strategy) or is played with probability zero (by

the player himself). This can be captured by polytopes (see Ziegler (1995), Grünbaum

(2003)) whose facets represent pure strategies, either as best responses or having proba-

bility zero. We explain first the simpler case of symmetric equilibria of a symmetric game

with d×d payoff matrix C to player 1, say. We then extend this easily to nonsymmetric

games. Let

S = {z ∈ Rd | z≥ 0, Cz≤ 1} (2.1)
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where 0 and 1 denote vectors with all entries 0 and 1, respectively, and inequalities hold

for all components. The right hand sides of the inequality Cz≤ 1, which are 1, represent

normalized payoffs, as explained in Lemma 2.2 and subsequently. We can assume that

C is nonnegative and has no zero column by adding a constant to all payoffs, which

does not change the best response structure, so that the polyhedron S is bounded and

thus a polytope. We assume there are no redundant inequalities in Cz ≤ 1, which would

correspond to dominated strategies. Then the game is nondegenerate if and only if the

polytope S is simple, that is, every vertex lies on exactly d facets of the polytope. A

facet is obtained by making one of the inequalities defining the polytope binding, that is,

by converting it into an equality. The following lemma characterizes Nash equilibria in

terms of polytope vertices, as already shown by Vorob’ev (1958).

Lemma 2.2 A mixed strategy pair (x,y) is a symmetric Nash equilibrium of the game

(C,C⊤) if and only if x= y= u ·z and z∈ S in (2.1), z ̸= 0, u= 1/∑i zi, and z⊤(1−Cz) = 0,

where z must be a vertex of S by nondegeneracy.

Proof: Let z ∈ S, z ̸= 0 and u = 1/∑i zi. Then u > 0, and zu is a mixed strategy x. The

condition Cz ≤ 1 is equivalent to Cx ≤ 1u. The orthogonality condition z⊤(1−Cz) = 0

is equivalent to x⊤(1u−Cx) = 0, so that for each positive component xi of x (of which

there is at least one), (Cx)i = u = maxk(Cx)k. Thus, by Lemma 2.1, x is a best response to

itself, that is, (x,x) is a symmetric equilibrium. Conversely, any such equilibrium (x,x),

with u = maxk(Cx)k > 0, and z = x ·1/u, gives a vector z with the stated properties.

The vector z is on d facets of S since for each i, either zi = 0 or (Cz)i = 1. If z

was not a vertex but on a higher-dimensional face of S, any vertex of that face would be

on additional facets, contradicting nondegeneracy of the game as S would then not be a

simple polytope.

In the game of chicken above, z = (1/6,1/3)⊤ gives the symmetric equilibrium. The

vector z has to be re-scaled to become a mixed strategy x. The equilibrium payoff u,

normalized to 1 in Cz≤ 1, is the scaling factor. The converse mapping from x to z defines

a projective transformation of a polyhedron representing the “upper envelope” of expected

payoffs to the polytope S (see von Stengel (2002)).
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2.2 The Lemke–Howson algorithm

The conditions in Lemma 2.2 define a linear complementarity problem (LCP) (see Cottle,

Pang, and Stone (1992)), usually stated as follows: find z so that

z≥ 0, q+Mz≥ 0, z⊤(q+Mz) = 0, (2.2)

here with data M =−C, q = 1. This LCP has a trivial solution z = 0, which is not a Nash

equilibrium. However, 0 is an artificial equilibrium, which is the starting point of what

we call the symmetric LH algorithm.

Given a nondegenerate symmetric game (C,C⊤), the symmetric LH algorithm finds

a nonzero vertex z of the polytope S in (2.1) so that z⊤(1−Cz) = 0, giving a symmetric

Nash equilibrium by Lemma 2.2.

It is useful to label the facets of S, as done by Shapley (1974). For each pure strategy i,

the facets defined by zi = 0 and by (Cz)i = 1 both get label i. Every vertex has the label

of the facets it lies on. The complementarity condition z⊤(1−Cz) = 0 then means that z

is completely labelled (has all labels i), since then either zi = 0 or (Cz)i = 1 (or both, but

this cannot occur since S is simple, so a completely labelled vertex has each label exactly

once).

The LH algorithm is started from the completely labelled vertex z = 0 by choosing

one label k that is initially dropped, meaning that label k is no longer required. This is the

only free choice of the algorithm, which from then on proceeds in a unique manner. By

leaving the facet with label k, a unique edge is traversed whose endpoint is another vertex,

which lies on a new facet. The label, say j, of that facet, is said to be picked up. If this is

the missing label k, the algorithm terminates at a completely labelled vertex. Otherwise, j

is clearly duplicate, and the next edge is (uniquely) chosen by leaving the facet that so far

had label j, and the process is repeated. The LH method generates a sequence of k-almost

complementary edges and vertices (having all labels except possibly k, where k occurs

only at the starting point and endpoint). The resulting path cannot repeat a vertex as this

would offer a second way to proceed when that vertex is first encountered, which is not

the case (since S is simple). Hence, it terminates at a Nash equilibrium. This is illustrated

in Figure 2.1 for dimension 3.
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Figure 2.1 The symmetric LH algorithm in dimension 3. Point a is completely labelled, being

adjacent to facets with labels 1,2,3. Dropping label 1, it proceeds to point b picking

up label 2, now duplicate. The next point is c with duplicate label 3, and finally d

where the missing label 1 is picked up, which terminates the path.

As in the simplex algorithm (Dantzig (1963)), edge traversal is implemented alge-

braically by pivoting with variables entering and leaving a basis, the nonbasic variables

representing the current facets. The only difference is the rule for choosing the next enter-

ing variable, which in the simplex algorithm depends on the objective function. Here, the

complementary pivoting rule chooses the nonbasic variable with duplicate label to enter

the basis.

In Figure 2.1, the starting point a has an orientation, with the labels 1,2,3 in clock-

wise order. When label 1 is dropped, the remaining labels keep their orientation (in one

dimension less) relative to the edges of the path. In Figure 2.1, label 2 is always to the

left and label 3 always to the right of the edge. At the endpoint of the path, the missing

label is picked up at the other end of the edge, so that the orientation of that vertex is

opposite to that of the starting vertex of the path; in Figure 2.1, point d has labels 1,2,3 in

anticlockwise order. This generalizes to higher dimensions, where orientation is defined

as the sign of a certain determinant. The endpoints of any LH path have opposite orien-

tation, which leads to an index theory of equilibria (see Shapley (1974) and Garcia and

Zangwill (1981)). Knowing the orientation of the artificial equilibrium, the orientation of

any k-almost complementary edge can be determined directly.

For nonsymmetric bimatrix games (A,B), or even for finding nonsymmetric equilibria

of symmetric games as in the game of “chicken” above, the LH algorithm is applied as

follows, which is its standard form. Let

z =
(

x

y

)
, C =

(
0 A

B⊤ 0

)
. (2.3)
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The polytope S of dimension d = m+n in (2.1) is then the product P×Q of the polytopes

P = {x ∈ Rm | x≥ 0, B⊤x≤ 1}, Q = {y ∈ Rn | Ay≤ 1, y≥ 0}. (2.4)

Any Nash equilibrium (x,y) of (A,B) is again given by z⊤(1−Cz)= 0, which is equivalent

to x⊤(1−Ay) = 0 and y⊤(1−B⊤x) = 0. These conditions state that x is a best response

to y and vice versa, where x and y have to be normalized to represent mixed strategies.

The only difference to Lemma 2.2 is that this normalization has to be done separately for

x and y, rather than for the entire vector z. It is easy to see that in equilibrium x = 0 if and

only if y = 0, and then (0,0) is the artificial equilibrium.

The LH algorithm is applied as before, where a label corresponds either to a strategy i

of player 1 or a strategy j of player 2. These have to be distinct, so it is convenient to

number the n strategies of player 2 as m+1, . . . ,m+n, as suggested by Shapley (1974). A

label then represents a pure strategy that has probability zero or is a best response. A label

i with 1≤ i≤m is a strategy of player 1 and determines the facet xi = 0 of P or (Ay)i = 1

of Q, corresponding to the respective ith inequality in (2.4) that becomes binding. A label

j with m+1≤ j ≤ m+n is a strategy of player 2 and determines the facet (B⊤x) j = 1 of

P or y j = 0 of Q, which is the respective jth binding inequality in (2.4).

The LH path using the edges of S = P×Q is a subgraph of the product graph of the

edge graphs of P and Q. This means that edges are alternately traversed in P and Q,

keeping the vertex in the other polytope fixed. A duplicate label picked up in P is dropped

in Q and vice versa. This is the standard view of the LH algorithm; for further details see

von Stengel (2002).

We end this section with two similar, simple, but useful lemmas concerning the LH

algorithm, which, as far as we know, have not appeared explicitly in the literature thus

far, although they are implicit in the work of McLennan and Tourky (2005). Assume that

P and Q are simple, which is true if the game is nondegenerate. Then, any vertex of P is

defined by exactly m facets, and so has m labels. Likewise, any vertex of Q has n labels.

Lemma 2.3 Every LH path on P×Q induces a simple path in each polytope P and Q,

that is, no vertex of P or Q is ever left and visited again on an LH path.

Proof: Suppose to the contrary that a vertex x of P is left and visited again on an LH path.

This means that there are three vertex pairs (x,y), (x,y′), and (x,y′′) with y ̸= y′ ̸= y′′ on the
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LH path on P×Q, and all three are k-almost-complementary, for some k in {1, . . . ,m+n}.

The m labels of x define n− 1 labels that y, y′, and y′′ must share. However, this is

impossible, since the n− 1 labels correspond to n− 1 equations in n-space that define a

line, which can only contain two vertices. The situation for Q is analogous.

Lemma 2.4 Let (x,y) be a completely labelled vertex pair of P×Q. If (x,y′) is part of

an LH path on P×Q, either y′ = y or (x,y) and (x,y′) are connected by an edge on that

LH path (i.e. y′ and y connected by an edge in Q).

Lemma 2.4 states that if a vertex x of P is part of some complementary vertex pair,

then, for any LH path, it only appears as the endpoint of the induced path in P. The

analogous statement is true for a vertex y of Q that is part of a complementary vertex pair.

Proof: Since (x,y′) is part of an LH path, it is a k-almost-complementary vertex pair, for

some k in {1, . . . ,m+n}. This means that x and y′ have at least m+n−1 distinct labels.

Either they have all m+n labels and y′ = y, or y′ shares exactly one label with x, and then

this is a duplicate label. Dropping this label in Q leads to the vertex y, along the edge

connecting y′ and y.
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Chapter 3

Hard-to-Solve Bimatrix Games

In this chapter, we construct hard-to-solve bimatrix games using the theory of polytopes.

The study of bimatrix games via the best response polytopes can be traced back to the al-

gorithm of Vorob’ev (1958) for finding all Nash equilibria of a bimatrix game (via a vari-

ant of Lemma 2.2), and Kuhn (1961), who simplified this algorithm. Important progress

was made with the development of the algorithms by Lemke and Howson (1964) and

Lemke (1965), which are major topics of this thesis. Shapley (1974) introduced facet la-

bels, and described Nash equilibria of bimatrix games as completely labelled vertex pairs

of the best response polytopes, which is crucial to our exposition throughout. Since then,

there has been much relevant research into the theory of polytopes, LCPs, and computa-

tional complexity.

For constructing bimatrix games with certain properties, polytopes with a known com-

binatorial structure are useful. In a d× d game where each player’s payoff matrix is the

identity matrix, there are 2d − 1 many equilibria, which are all symmetric, correspond-

ing to the non-empty subsets of {1, . . . ,d}. Both the best response polytopes are cubes,

and in each polytope every vertex is part of a complementary vertex pair, with one ver-

tex, the origin, corresponding to the artificial equilibrium. We explain the case d = 3 in

full detail in Section 3.1. Quint and Shubik (1997) conjectured that these games achieve

the maximal number of equilibria for any d× d square game, and proved it for d ≤ 3.

Keiding (1997), and independently McLennan and Park (1999), showed that it is true for

d = 4, but the conjecture was refuted by von Stengel (1999), who constructed d×d games

with more than 2d many equilibria for d ≥ 6, by labelling pairs of dual cyclic polytopes;
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the case d = 5 is open. In this context, dual cyclic polytopes have two attractive fea-

tures: their combinatorial structure is known in arbitrary dimension (Gale (1963)); for a

polytope with a fixed number of facets they have the most number of vertices possible,

according to the upper bound theorem of McMullen (1970). In this chapter, we use not

only dual cyclic polytopes, but also simplotopes, which are the product of simplices, thus

generalizing cubes.

In Section 3.1, we give an introduction to constructing games with labelled polytope

pairs. In Section 3.2, we describe the well-understood dual cyclic polytopes. In Sec-

tion 3.3, we construct the double cyclic polytope games Γ(m,n), by labelling a pair of

dual cyclic polytopes. In Section 3.4, we show that for the square games Γ(d,d) the LH

algorithm takes exponentially many steps for any dropped label. In Section 3.5, we show

that, as well as producing long LH computations, the games Γ(d,2d) also take on average

exponential time to solve by support enumeration. This requires that the columns of the

game Γ(d,2d) are randomly permuted. We explain the square case Γ(d,d) first, since

the LH paths of the games Γ(d,2d) are easily described in terms of those of Γ(d,d). In

Section 3.6, we describe how to “unscramble” the random permutation and quickly find

an equilibrium of Γ(d,2d), if the rest of the construction is known. In Section 3.7, we

explain how to interpret the “Lemke paths” of Morris (1994) as paths of the symmetric

LH algorithm described in Section 2.2. All ordinary LH paths for these symmetric games

are very short, and lead to nonsymmetric pure-strategy equilibria. We then explain the use

of imitation games in this context, as suggested by McLennan and Tourky (2005), giving

another class of square games with exponentially long LH paths. Extending this, in Sec-

tion 3.8, we present triple imitation games T(d), which are 3d× d games that (like the

games Γ(d,2d)) are hard to solve by both support enumeration and the LH algorithm. In

fact, a pair of labelled dual cyclic polytopes may not have any completely labelled vertex

pairs at all, and in Section 3.9 we give an example of a class of such labelled dual cyclic

polytope pairs.
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3.1 Constructing bimatrix games with polytopes

We construct games by defining P and Q in (2.4). These polytopes have a special form,

where the first m inequalities in P and the second n inequalities in Q are nonnegativities.

This is not restrictive, since it is only the combinatorial structure of the polytopes that

matters. The first building block for constructing an m× n bimatrix game is a pair of

polytopes P′ and Q′ of known combinatorial structure, with appropriate dimensions and

number of facets; P′ is in dimension m with m+ n facets, and Q′ is in dimension n with

m+n facets. The m+n facets of each of the polytope pairs are labelled with 1, . . . ,m+ n,

which correspond to the pure strategies of the game. If the labellings gives rise to at least

one completely labelled vertex pair, then the polytopes can be brought into the special

form (2.4). The special form is achieved via an affine transformation, described in Propo-

sition 3.1, which is the final step in the construction. A completely labelled vertex pair is

chosen, and mapped by the affine transformation to the origin (the artificial equilibrium of

the LH algorithm), as described in Proposition 3.1. Then, all the other completely labelled

vertex pairs correspond to Nash equilibria.

Thus, we are only interested in the combinatorial structure of the polytopes, as en-

coded by their vertex sets. Throughout this chapter, we represent vertices as bitstrings.

For a simple polytope in dimension d with f facets, each vertex is represented by a bit-

string of length f with exactly d bits that are 1, where the ith bit, which corresponds to

the ith facet, is 1 if and only if the vertex lies on the ith facet.

The labellings of the polytopes determine the order in which the facet-defining in-

equalites appear in the game matrices. This is illustrated in Proposition 3.1 and the follow-

ing simple example. The example uses cubes and is thus also helpful for understanding

the construction of triple imitation games in Section 3.8, which uses simplotopes, a gen-

eralization of cubes. For simplicity, we start with polytopes that already have the special

form of (2.4). After the example, we explain the affine transformation required to contruct

game matrices using general polytopes. We construct 3×3 games in which the polytopes

P and Q are both combinatorial 3-cubes. Since m = n = 3, we have f = 3+ 3 = 6. To

represent the vertices of the 3-cubes as bitstrings, we need an order of the facets that will

correspond to the order of the positions in the bitsrings. By the symmetry of cubes, we

need only know which facets are “opposite” each other. Suppose that the facet corre-
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sponding to position i in the bitstring is opposite the facet corresponding to position i+3

for i = 1,2,3. Thus, for any bitstring u representing a vertex of the 3-cube, we have

ui = 1 ⇐⇒ ui+3 = 0 for i = 1,2,3. (3.1)

So a bitstring u represents a vertex of the 3-cube if and only if

u ∈ {111000,011100,101010,110001,100011,010101,001110,000111}.

It is easy to directly write down inequalities defining a cube in dimension d, where

d of the 2d facets are nonnegativities namely, 0 ≤ xi ≤ 1, for i = 1,2,3. Thus, we do

not need to use an affine transformation to construct the game matrices, and P′ = P and

Q′ = Q. The artificial equilibrium is (0,0), and so the first three inequalities in P are

x≥ 0, which have labels 1,2,3, respectively, and the last three inequalities in Q are y≥ 0,

which have labels 4,5,6, respecitvely. Now we label the remaining facets of P and Q.

Without loss of generality, we label inequality xi ≤ 1 of P with label i+3 for i = 1,2,3.

We consider three different labellings for Q.

(a) First, suppose that P and Q are labelled identically. Then every vertex of P is part of

a completely labelled vertex pair, with the vertex in Q being the complement of the

vertex in P′. For example, (u,v) = (011100,100011) is one of the eight completely

labelled vertex pairs, with u having labels {2,3,4} and v having labels {1,5,6}. The

corresponding game has seven Nash equilibria, and the best response polytopes are

P = {x ∈ R3 | x≥ 0, Ix≤ 1}, Q = {y ∈ R3 | Iy≤ 1, y≥ 0} ,

where I as the identity matrix in R3×3. The corresponding game is shown in Fig-

ure 3.2.

(b) We now change the labelling fo Q′ so that the corresponding game has a unique

completely mixed equilibrium. The labelling of Q′ is a permutation relative to the

labelling of P′. The permutation keeps labels 4,5,6 fixed, and maps label 1 to 3, 2

to 1, and 3 to 2. It is easy to check that the only completely labelled vertex pairs are

(u,v) = (111000,000111) and (u,v) = (000111,111000), so the game has a unique

completely mixed equilbrium, where each player plays all his strategies with positive

probability.
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(c) We consider one more labelling of Q. Again, facets 4,5,6 get labels 4,5,6 respec-

tively. Facet 1 gets label 1, facet 2 gets label 3 and facet 3 gets label 2. It is easy to

check that the set of completely labelled vertex pairs is

{(111000,000111),(000111,111000),(100011,011100),(011100,100011)} .

The polytopes P and Q with labels are illustrated in Figure 3.1.
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Figure 3.1 A pair of labelled 3-cubes with four completely labelled vertex pairs, which are high-

lighted. The labellings correspond to example (c). If the labels 3 and 2 were swapped

in polytope in Q, every vertex is part of a completely labelled vertex pair, and the cor-

responding game has seven Nash equilibria (example (a)). If the labels 1 and 3 are

swapped in Q, there are two compltely labelled vertex pairs and the corresponding

game has a unique Nash equilirium (example (b)).

How do the different labelling affect the game matrices. Since we only change the

labels of Q, only the payoff matrix A changes. The ith row of A corresponds to label

i. Thus, the inequality (Ay)i should be that inequality that has label i. In each case the

payoff matrix B is just the identity matrix, and the payoff matrices for player 1 are identity

matrices with the rows permuted. The examples (a) and (b) easily generalize to arbitrary

dimension, to give d× d games with 2d − 1 and 1 equilibrium, respectively. Notice that

however we label a pair of d-cubes with 2d facets, the corresponding game will always

have a completely mixed equilibrium.

For a pair of labelled polytopes that do not have the special form of (2.4), the la-

belling of the polytopes determines the order of the facet-defining equalities in P′ and
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Figure 3.2 Game (a), which corresponds to two identically labelled 3-cubes, has seven Nash

equilibira. Game (b) has a unique completely mixed equilibrium. Game (c) has

three equilibria. In each game, B⊤ = I, and the matrix A is an identity matrix with

permuted rows.

Q′. To get the payoff matrices A and B, we apply the affine transformation described in

Proposition 3.1.

Proposition 3.1 (von Stengel (1999)) Let P′ be a simple m-polytope and Q′ be a simple

n-polytope, both with m+n labelled facets, which have at least one complementary pair

(x′,y′) of vertices. Then there are m× n matrices A and B defining P and Q in (2.4), a

permutation of the labels 1, . . . ,m+ n of P′ and Q′ yielding the labels of P and Q, and

invertible affine transformations from P′ to P and from Q′ to Q that map (x′,y′) to (0,0).

Furthermore, every complementary vertex pair of (P′,Q′) except (x′,y′) represents a Nash

equilibrium of the bimatrix game (A,B).

Proof: Permute the labels 1, . . . ,m+n in the same way for P′ and Q′ such that x′ has labels

1, . . . ,m and y′ has labels m+1, . . . ,m+n. This does not change the complementary pairs

of (P′,Q′). Let

P′ = {z ∈ Rm |Cz≤ p, Dz≤ q}

where Cz≤ p represents the m inequalities for the facets 1, . . . ,m and Dz≤ q the remaining

n inequalities. For the vertex x′, we have Cx′ = p and Dx′ < q since P′ is simple. The m

binding inequalities for x′ are linearly independent since x′ is a vertex, so C is invertible

and z 7→ x = −Cz + p is an affine transformation with inverse z = −C−1(x− p). Let

P = {x ∈ Rm | −C−1(x− p) ∈ P′}. Then, with r = q−DC−1 p,

P = {x ∈ Rm | −x≤ 0, −DC−1x≤ r}.

Corresponding points of P and P′ have the same labels. Since the vertex 0 of P cor-

responds to x′ in P′, 0 < r. Thus, the jth row of −DC−1x ≤ r can be normalized by
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multiplication with the scalar 1/r j, so we can assume r = 1. Then P is defined as in (2.4)

with the n×m transposed payoff matrix B⊤ = −DC−1. Similarly, we can find an m× n

matrix A so that Q in (2.4) is an affine transform of Q′. The complementary vertex pairs

of (P′,Q′) except (x′,y′) correspond to the Nash equilibria of (A,B) by construction.

The effect of the affine transformation on the size of the numbers in the description of

P′ and Q′ is polynomial. Thus, if the data required to specify P′ and Q′ is polynomial in

m+n (true for all the polytopes we consider), so will be the data for the game matrices A

and B.

In Section 3.9, we show that it is possible to label a pair of polytopes, with each

poltopes in dimension d with 2d facets, such that there are no completely labelled vertex

pairs. Thus, not every pair of polytopes with the correct numbers of facets can be labelled

arbitrarily to produce a game.

In the next section, we introduce dual cyclic polytopes, which we use in the construc-

tion of games with exponentially long LH paths.

3.2 Dual cyclic polytopes

We construct games by defining P and Q in (2.4) as the well-understood “dual cyclic poly-

topes” (see Ziegler (1995) or Grünbaum (2003)), similar to von Stengel (1999). These

polytopes are in dimension d and have f facets, where d = m for P and d = n for Q, and

in both cases f = m+n.

A standard way of obtaining a cyclic polytope P′ in dimension d with f vertices is

to take the convex hull of f points µ(ti) on the moment curve µ : t 7→ (t, t2, . . . , td)⊤ for

1 ≤ i ≤ f . However, the polytopes in (2.4) are defined by inequalities and not as convex

hulls of points. In the dual of a polytope, its vertices are re-interpreted as normal vectors

of facets. The polytope P′ is first translated so that it has the origin 0 in its interior, for

example by subtracting the arithmetic mean µ of the points µ(ti) from each such point.

The resulting vectors ci = µ(ti)−µ then define the dual cyclic polytope

P′′ = {z ∈ Rd | c⊤i z≤ 1, 1≤ i≤ f }. (3.2)
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Both P and Q in (2.4) will be dual cyclic polytopes with a special order of their inequalities

corresponding to the facet labels. A suitable affine transformation, described in Proposi-

tion 3.1, gives P from P′′, and Q in a similar manner, so that the first m inequalities (for

the pure strategies of player 1) in P have the form x ≥ 0, and the last n inequalities (for

the pure strategies of player 2) in Q are y ≥ 0. The last n inequalities B⊤x ≤ 1 in P and

the first m inequalities Ay ≤ 1 in Q then determine the game (A,B). The game data is of

polynomial size in m+n, since the coefficients ci in (3.2) are clearly polynomial, and the

affine transformation giving P from P′′, and simlilarly Q, preserves polynomiality. So,

the running time of an algorithm with the game as input is polynomial if and only if it is

polynomial in m+n.

A vertex u of a dual cyclic polytope in dimension d with f facets is characterized

by the bitstring u1u2 · · ·u f of length f , with the kth bit uk indicating whether u is on the

kth facet (uk = 1) or not (uk = 0). The polytope is simple, so exactly d bits are 1, the

other f − d bits are 0. Assume that t1 < t2 < · · · < t f when defining the kth facet of

P′′ by the binding inequality (µ(tk)− µ)z ≤ 1. Then the vertices of P′′ are characterized

by the bitstrings fulfilling the Gale evenness condition, due to Gale (1963): A bitstring

represents a vertex if and only if any substring of the form 01 · · ·10 has even length, so

0110, 011110, etc., is allowed, but not 010, 01110, and so on. A maximal substring of 1’s

is called a run. Except for in Section 3.9, we only consider even dimensions d, where the

allowed odd runs of 1’s at both ends of the string can be glued together to form an even

run, which shows the cyclic symmetry of the Gale evenness condition. Let G(d, f ) be the

set of these bitstrings of length f with d ones fulfilling Gale evenness.

3.3 The double cyclic polytope games Γ(m,n)

For the rest of this chapter, both m and n are even, and m ≤ n. The vertices of P and

Q are described by the sets of bitstrings G(m,m+ n) and G(n,m+n), respectively. The

1’s in a bitstring encode the facets that the vertex belongs to. We need facet labels for

the complementarity condition and the LH algorithm. The facet labels are defined by

permutations l and l′ of 1, . . . ,m+n for P and Q, respectively. For a vertex u of P, which

we identify with its bitstring in G(m,m+ n), its labels are given by l(k) where uk = 1.

31



The kth facet of P (corresponding to the kth position in a bitstring) has label l(k) = k,

so l is simply the identity permutation. A vertex v of Q is identified with a bitstring in

G(n,m+ n), and its labels are l′(k) where vk = 1, for 1 ≤ k ≤ m+ n. The kth facet of

Q has label l′(k). The permutation l′ has the fixed points l′(1) = 1 and l′(m) = m, and

otherwise exchanges adjacent numbers, as follows:

l′(k) =


k, k = 1,m,

k+(−1)k, 2≤ k ≤ m−1,

k− (−1)k, m+1≤ k ≤ m+n.

(3.3)

Let Γ(m,n) be a game defined in this way.

The artificial equilibrium e0 of Γ(m,n) is a vertex pair (u,v) so that u is labelled

with 1, . . . ,m and v with m+ 1, . . . ,m+ n, so that we have complementarity. In terms of

bitstrings, u = 1m0n (which are m ones followed by n zeros) and v = 0m1n, which both

fulfill Gale evenness, and have the indicated labels under l and l′, respectively, so that

e0 = (1m0n,0m1n) ∈ G(m,m+n)×G(n,m+n). (3.4)

The following lemma states that in any Nash equilibrium of Γ(m,n), player 1’s strat-

egy has full support.

Lemma 3.2 Consider a Nash equilibrium of Γ(m,n), represented by a pair of bitstrings

(u,v) in G(m,m+n)×G(n,m+n). Then u = 0ms and v = 1mt for some bitstrings s and t

of length n.

Proof: The vertex pair (u,v) is completely labelled, and it is not the artificial equilib-

rium e0. Either um = 1 or vm = 1. We begin with the latter case, so um = 0. If vm+1 = 1,

then um+2 = 0 (via complementarity, since l′(m+1) = m+2) so um+1 = 0 by Gale even-

ness, and thus vm+2 = 1. Continuing in that way, all 1’s to the right of the mth bit vm

of v (which is 1) have to come in pairs. Similarly, if vm−1 = 1 (implied by vm+1 = 0,

vm = 1 and Gale evenness), then um−2 = 0 by complementarity, which with um = 0 im-

plies um−1 = 0, and vm−2 = 1. This means that the 1’s to the left of vm come in pairs if

there is a zero to the left of them. But then the run of 1’s containing vm has odd length

and must include vm+n, and then it is too long. Hence, there is no zero in v to the left of

vm, and v = 1mt and u = 0ms for some bitstrings s and t of length n, as claimed.
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In the same way, um = 1 implies that all bits in u to the left of um are 1, and, since u

has only m bits equal to one, all bits to right of um are zero, so that (u,v) = e0, which is

the artificial equilibrium and not a Nash equilibrium.

Corollary 3.3 The only Nash equilibrium of the game Γ(d,d) is e1 = (0d1d,1d0d).

Proof: For m = n = d, the vertices u and v in Lemma 3.2 are bitstrings containing d 1’s,

so that s = 1d and t = 0d .

3.4 The square games Γ(d,d) and long Lemke–Howson

paths

In this section, we only consider square games where d = m = n. Then, by Corollary 3.3,

all LH paths, for any missing label, lead from e0 to e1. We analyze these paths for square

games. It will then be easy to describe the LH paths for the non-square games Γ(d,2d),

which are treated in Section 3.5.

Denote by π(d,k) the LH path with missing label k for the game Γ(d,d). We regard

π(d,k) as a sequence (u0,v0) (u1,v1) · · · (uL,vL) of vertex pairs in P×Q, that is, in

G(d)×G(d), where G(d) abbreviates G(d,2d). Let L(d,k) = L be the length of that

path.

P Q
step 1 2 3 4 5 6 7 8 1 3 2 4 6 5 8 7 step

v

1 1 1 1 · · · ·
1 〈 · · · · 1

v

1 1 1

· 1 1

v

1

v

1 · · · 〉 2
3 〈 · · ·

v

1

v

1 · 1 1

·
v

1 1 · 1

v

1 · · 〉 4
5 〈 · ·

v

1

v

1 · · 1 1

· ·
v

1

v

1 1 1 · · 〉 6
7 〈 ·

v

1 1 · · · 1

v

1

· · · 1

v

1 1

v

1 · 〉 8
9 〈 ·

v

1 1 · ·
v

1 1 ·
· ·

v

1

v

1 · 1 1 · 〉 10
11 〈 · ·

v

1

v

1 · 1 1 ·
·

v

1 1 · ·
v

1 1 · 〉 12
13 〈 · · · 1

v

1 1

v

1 ·
·

v

1 1 · · · 1

v

1 〉 14
15 〈 · ·

v

1

v

1 1 1 · ·
· ·

v

1

v

1 · · 1 1 〉 16
17 〈 ·

v

1 1 · 1

v

1 · ·
· · ·

v

1

v

1 · 1 1 〉 18
19 〈 · 1 1

v

1

v

1 · · ·
· · · · 1

v

1 1 1 〉 20v

1 1 1 1 · · · ·

Figure 3.3 The path π(4,1), with vertices of P and Q as bitstrings. A dot represents a zero bit.
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As an example, Figure 3.3 shows π(4,1). The numbers at the top are the labels l(k)

and l′(k) for k = 1, . . . ,8. The vertices of P and Q are shown as bit patterns, where for

better visual distinction of the bits a zero bit is written as a dot. The 20 steps of this path

are indicated at the side, where the odd-numbered steps change the vertex in P, and the

even-numbered steps the vertex in Q. Step i changes the vertex pair (ui−1,vi−1) to (ui,vi).

The starting point e0 is the vertex pair e0 = (u0,v0) = (11110000,00001111). Step 1 is to

drop label 1 in P from u0, so the bit u0
1 changes from 1 to 0. By Gale evenness, this gives

the bitstring 01111000 as the new vertex u1 in P. In Figure 3.3, the bit 1 that is changed

to 0 has a little downward arrow “v” underneath it, with the new bit that changes from 0

to 1 indicated with that arrow above the new bit 1 in the next vertex. In u1, label 5 has

been picked up, which is now duplicate and dropped from vertex v1 in Q (where v1 = v0),

giving the next vertex v2 = 00011011 in step 2. In P, the vertex u2 is unchanged, u2 = u1.

The new duplicate label is 4. Hence, in step 3, label 4 is dropped in P, giving vertex

u3 = 01101100. In that manner, the path proceeds until it ends at (u20,v20) = e1.

We will show that all paths can be expressed in terms of the two special paths π(d,1)

and π(d,2d). These have certain symmetries. Figure 3.3 illustrates the symmetry of

π(d,1), which is stated in the next lemma, for d = 4.

Lemma 3.4 Let L = L(d,1) and let (ui,vi) be the ith vertex pair of the path π(d,1). Then

for 0≤ i≤ L, (ui,vi) = (vL−i,uL−i).

Proof: The particular names of the labels do not matter, so we can re-name them for both

P and Q with the permutation l′ in (3.3), the kth facet in P getting label l′(l(k)), which is

l′(k), and in Q label l′(l′(k)), which is l(k). But then P and Q switch roles, e0 is exchanged

with e1, label 1 stays the same, and the path backwards corresponds to π(d,1) itself, as

claimed.

The symmetry of the path π(d,2d) is less easy to state. Figure 3.4 shows this path

for d = 6. In that picture, disregard the last vertex in P, and the first and last vertex in Q.

Then the column labelled 12 in both P and Q has only zeros since 12 is the missing label.

When this column in both P and Q is also disregarded, the bit pattern of the path shows

a symmetry in each polytope by “pointwise reflection”, where the point of reflection is

in column 6 in step 18 of P, and at the vertex that stays fixed in Q during that step. The
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P Q
step 1 2 3 4 5 6 7 8 9 10 11 12 1 3 2 5 4 6 8 7 10 9 12 11 step

· · · · · · 1 1 1 1

v

1 1

v

1 1 1 1 1 1 · · · · · · 〉 1
2 〈

v

1 · · · · · 1

v

1 1 1 · 1

· 1 1 1 1

v

1

v

1 · · · · · 〉 3
4 〈 1 · · · ·

v

1

v

1 · 1 1 · 1

· 1 1

v

1 1 · 1

v

1 · · · · 〉 5
6 〈 1 · · ·

v

1

v

1 · · 1 1 · 1

· 1 1 ·
v

1

v

1 1 1 · · · · 〉 7
8 〈 1 · ·

v

1 1 · · · 1

v

1 · 1

· 1 1 · · 1

v

1 1

v

1 · · · 〉 9
10 〈 1 · ·

v

1 1 · ·
v

1 1 · · 1

· 1 1 ·
v

1

v

1 · 1 1 · · · 〉 11
12 〈 1 · · ·

v

1

v

1 · 1 1 · · 1

· 1 1

v

1 1 · ·
v

1 1 · · · 〉 13
14 〈 1 · · · · 1

v

1 1

v

1 · · 1

· 1 1

v

1 1 · · · 1

v

1 · · 〉 15
16 〈 1 · · ·

v

1

v

1 1 1 · · · 1

· 1 1 ·
v

1

v

1 · · 1 1 · · 〉 17
18 〈 1 · ·

v

1 1 · 1

v

1 · · · 1

· 1 1 · ·
v

1

v

1 · 1 1 · · 〉 19
20 〈 1 · · 1 1

v

1

v

1 · · · · 1

·
v

1 1 · · · 1

v

1 1 1 · · 〉 21
22 〈 1 ·

v

1 1

v

1 1 · · · · · 1

· · 1

v

1 · · 1

v

1 1 1 · · 〉 23
24 〈 1 · 1 1 ·

v

1

v

1 · · · · 1

· · 1 1 ·
v

1

v

1 · 1 1 · · 〉 25
26 〈 1 · 1

v

1 · · 1

v

1 · · · 1

· ·
v

1 1

v

1 1 · · 1 1 · · 〉 27
28 〈 1

v

1 1 · · · 1

v

1 · · · 1

· · · 1 1

v

1

v

1 · 1 1 · · 〉 29
30 〈 1 1 1 · ·

v

1

v

1 · · · · 1

· · ·
v

1 1 · 1

v

1 1 1 · · 〉 31
32 〈 1 1 1 ·

v

1

v

1 · · · · · 1

· · · ·
v

1

v

1 1 1 1 1 · · 〉 33
34 〈 1 1 1

v

1 1 · · · · · ·
v

1

· · · · ·
v

1 1 1 1 1

v

1 · 〉 35
36 〈 1 1 1 1 1

v

1 · · · · · ·
· · · · · · 1 1 1 1 1

v

1

Figure 3.4 The path π(6,12).

pointwise symmetry means that in each polytope, writing each bitstring backwards, while

ignoring the bit corresponding to the missing label, gives the path in reverse direction

(disregarding the first and the last two vertex pairs). For general d, this symmetry is

stated in the next lemma.

Lemma 3.5 Let L = L(d,2d) and let (ui,vi) be the ith vertex pair of the path π(d,2d)

for 0 ≤ i ≤ L. Let B(d) be the sub-path (u1,v1) · · ·(uL−2,vL−2) of π(d,2d). Then for the

vertex pairs of B(d), for 1≤ i≤ L−2,

ui
k = uL−1−i

2d−k (1≤ k ≤ 2d−1), (3.5)

vi
1 = vL−1−i

2d = 1, (3.6)

vi
k = vL−1−i

2d−k (2≤ k ≤ 2d−2), (3.7)

ui
2d = vi

2d−1 = 0. (3.8)

In (u1,v1), the duplicate label is 1, which is then dropped in P, and never picked up again.

Before we prove Lemma 3.5 we state several auxiliary definitions and lemmas that are

used in subsequent proofs.
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Suppose that the bitstrings x= x1x2 . . .x2d and y= y1y2 . . .y2d are two vertices of G(d).

Then they are connected by an edge if and only if they differ only by a substring of the

form 1p0 in x and 01p in y or vice versa, for some even p ≥ 2. That is, there are two

positions i and j so that

{xixi+1 . . .x j, yiyi+1 . . .y j}= {1p0, 01p}.

(If j < i, this uses the cyclic symmetry of the Gale evenness bitstrings, taking 2d+1 as 1,

like in step 1 in Q in Figure 3.4.) We say that the edge crosses the positions i+1, . . . , j−1.

For example, the vertices x and y of P joined by step 3 in Figure 3.3 are 01111000 and

01101100, where i = 4, j = 6, x4x5x6 = 110, y4y5y6 = 011 and the remaining positions

of x and y are the same. This edge crosses only position 5. Recall that edges of LH paths

are edges of the product polytope P×Q, joining (u,v) to (u′,v) or (u,v) to (u,v′). We say

that such an edge crosses a position k if this holds for the respective edge joining u to u′

in P or v to v′ in Q.

To emphasize the dimension d, we write

ed
0 = (1d0d,0d1d), ed

1 = (0d1d,1d0d).

Lemma 3.6 No edge of π(d,1) crosses position 1 or 2d.

Proof: The first edge of π(d,1) joins ed
0 to (01d0d−1,0d1d) and does not cross position 1

or 2d. The same holds for the last edge joining (0d1d,01d0d−1) to ed
1 . In any other edge,

the bit in position 1 is zero in both polytopes, so the edge cannot cross position 1, nor the

cyclically adjacent position 2d.

The next lemma concerns the first and last vertex pair of the sub-path B(d) of π(d,2d)

defined in Lemma 3.5.

Lemma 3.7 Let L = L(d,2d) and let (ui,vi) be the ith vertex pair of the path π(d,2d) for

0≤ i≤ L = L(d,2d). Then

(u1,v1) = (1d0d,10d−11d−201), (3.9)

(uL−2,vL−2) = (0d−11d0,1d−10d1). (3.10)
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Proof: See Figure 3.4 for an illustration of the case d = 6. After step 1 of π(d,2d), the

vertex pair (u1,v1) as in (3.9) is reached. The last vertex pair of π(d,2d) is (uL,vL) = ed
1 .

This is reached in step L−1 by picking up label 2d in P. Hence, the previous vertex pair is

(uL−1,vL−1) = (0d−11d0,1d0d), where label d is duplicate. The vertex pair (uL−2,vL−2)

is therefore as in (3.10).

The next lemma states conditions similar to (3.5) and (3.7) in Lemma 3.5, except that

they concern labels rather than positions of bits. For the polytope Q, these conditions

therefore do not describe the point-symmetry visible in Figure 3.4.

Lemma 3.8 Let L = L(d,2d) and let (ui,vi) be the ith vertex pair of the path π(d,2d)

for 0 ≤ i ≤ L. Let r be the permutation of {1, . . . ,2d} defined by r(k) = 2d− k for 1 ≤

k ≤ 2d− 1 and r(2d) = 2d. Then for 2 ≤ i ≤ L− 2, step i of π(d,2d) corresponds to

step L− i as follows: If label k is duplicate in the vertex pair (ui−1,vi−1), and hence

dropped in step i to get (ui,vi), then label r(k) is duplicate in (uL−i,vL−i), and hence

picked up when reaching that vertex pair from (uL−1−i,vL−1−i) in step L− i. Furthermore,

for 1≤ i≤ L−2,

ui
k = uL−1−i

r(k) (1≤ k ≤ 2d), (3.11)

vi
l′(k) = vL−1−i

l′(r(k)) (1≤ k ≤ 2d). (3.12)

Proof: The proof will be by induction on i. The permutation r serves as a relabelling to

state (and prove) the symmetry of the path. It writes the labels 1, . . . ,2d− 1 backwards,

and keeps the missing label 2d fixed. For a vertex u of P, labels and positions are the same.

Then r, seen as a reversal of the bitstrings and cyclic shift by one position, preserves the

Gale evenness condition. The induction is therefore easy for P. Equations (3.9) and (3.10)

clearly imply (3.11) for i = 1.

For a vertex v of Q, equation (3.12) has to be read as follows: the bit of vertex vi in

position l′(k), which has label k (because l′ is its own inverse), is equal to the bit of vertex

vL−1−i in position l′(r(k)), which has label r(k).

The set {2,3, . . . ,2d−2} is mapped to itself under both r and l′. Both bijections map

d to itself, and it is easy to see that

l′(r(k)) = r(l′(k)) (2≤ k ≤ 2d−2). (3.13)

37



Consequently, for the more restrictive case 2 ≤ k ≤ 2d−2, equation (3.12) is equivalent

to

vi
l′(k) = vL−1−i

r(l′(k)) (2≤ k ≤ 2d−2, 1≤ i≤ L−2). (3.14)

Equation (3.14) implies that r can be applied to the positions of the bitstring v belonging

to the set {l′(2), . . . , l′(2d− 2)}, which is equal to {2, . . . ,2d−2}. If r could be applied

to all positions of v, then r would be directly “compatible” with both the labels and the

adjacency of vertices in Q. However, for k ∈ {1,2d− 1,2d}, equation (3.13) does not

hold, which complicates our proof. We have

l′(1) = 1, l′(r(1)) = 2d, r(l′(1)) = 2d−1,

l′(2d−1) = 2d, l′(r(2d−1)) = 1, r(l′(2d−1)) = 2d,

l′(2d) = 2d−1, l′(r(2d)) = 2d−1, r(l′(2d)) = 1,
(3.15)

As Figure 3.4 shows, the positions 1, 2d− 1, and 2d− 2 in Q are constant. Indeed, we

will show

vi
1 = 1, vi

2d−1 = 0, vi
2d = 1 (1≤ i≤ L−2). (3.16)

The left two columns of (3.15) then show (3.12) also for k = 1,2d− 1,2d. Instead of

(3.12), we prove by induction on i the stronger assertions (3.16) and (3.14). By (3.9) and

(3.10), they are true for i = 1.

The length L of π(d,2d) is even since the path starts in Q and ends in P. Hence, if i is

odd or even, so is L− i.

As inductive hypothesis, suppose that (3.11), (3.16), (3.14), and therefore (3.12), hold

for i− 1 instead of i. By the above considerations, this implies that if k is the duplicate

label of (ui−1,vi−1), to be dropped in step i, then r(k) is the duplicate label of (uL−i,vL−i),

to be picked up in step L− i.

Suppose first that i is even. Then step i from (ui−1,vi−1) to (ui,vi) is in P, that is, the

duplicate label is dropped in ui−1 to give the new vertex ui, and vi−1 = vi. Thus, (3.16)

and (3.14) hold trivially for i. Because r preserves Gale evenness, the edge connecting

ui−1 to ui in P corresponds to the edge connecting uL−i to uL−1−i as described. Hence,

(3.11) holds for i, which completes the induction step for even i.

Secondly, let i be odd, where step i is in Q. Let k be the duplicate label of (ui−1,vi−1).

In step i, label k is dropped in vi−1 to give the new vertex vi, and ui−1 = ui. Hence, (3.11)
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holds trivially for i. If k = 1, then because (3.16) holds for i−1 by inductive hypothesis,

changing vi−1
l′(k) to zero would give vi

l′(2d) = 1 and thereby terminate the path, which is not

possible. Hence, k ̸= 1. Similarly, if k = 2d− 1, then since (3.12) holds by inductive

hypothesis, label r(k) is duplicate in (uL−i,vL−i), where r(k) = 1 and so label 2d would

be picked up in (uL−1−i,vL−1−i) when going along the edge in Q from vL−i to vL−1−i. So

k ̸= 2d−1, which shows the induction step for (3.16).

The duplicate label k therefore fulfills 2 ≤ k ≤ 2d− 2 (since obviously k ̸= 2d), and

so does the label that is picked up, where the positions 1, 2d−1, and 2d are not crossed

because of (3.16). By inductive hypothesis, (3.14) holds for i− 1, and r preserves the

adjacency of positions. Hence, step i in Q corresponds to the backwards step L− i in Q as

claimed, which shows that equation (3.14) also holds for i. This completes the induction.

Proof of Lemma 3.5: The preceding proof also shows Lemma 3.5. Lemma 3.8 specifies

the statement to be proved by induction, and concerns the labels. We also used the fact

that the permutation r preserves the adjacency of positions, as stated in the equations of

Lemma 3.5. We have shown these since (3.5) is equivalent to (3.11), equation (3.6) fol-

lows from (3.16), equation (3.7) is equivalent to (3.14), and (3.8) holds trivially. Label 1

is never again picked up in P since it is present in Q from step 1 onwards, by (3.16).

The sub-path B(d) of π(d,2d) defined in Lemma 3.5, and the path π(d,1), which we

call A(d), are “building blocks” for other such paths in higher dimension, by inserting

constant bits in suitable positions. This is stated in the following central theorem. Two

paths π and π′ are concatenated by the following special path composition, which we

denote by π+π′. Hereby, both π and π′ are paths on P×Q = G(d)×G(d). Let (u,v) be

the last vertex pair of π and let (u′,v′) be the first vertex pair of π′. Then π+π′ is defined

if (u,v) and (u′,v′) are joined by an edge in P×Q, that is, either u = u′ and v is joined to

v′ by an edge of Q, or v = v′ and u is joined to u′ by an edge of P. The length of the new

path π+π′ is the sum of the lengths of π and π′ plus one; the number of its vertex pairs is

simply the respective sum.

Theorem 3.9 Let A(d) = π(d,1) and let B(d) be as in Lemma 3.5. Then there are paths

C(d) and mappings α,β,β′,γ,γ ′ defined on vertex pairs, and extended to sequences of
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vertex pairs, so that

A(d) = β(B(d))+C(d), (3.17)

C(d) = α(A(d−2))+β′(B(d)), (3.18)

B(d) = γ(A(d−2))+ γ ′(C(d−2)). (3.19)

We illustrate equation (3.17) for d = 6 using Figure 3.5, which shows the path A(6).

Comparing Figure 3.4 and Figure 3.5, we see that steps 1 to 33 of A(6) look almost like

steps 2 to 34 of π(6,12), which are the 33 steps of B(6). The only difference is that

in B(6), the bit in Q in column 1 is one and the bit in the column with label 12 is zero,

whereas in A(6) it is the other way around. The replacement of these two bits is performed

by the mapping β, defined in (3.20). The path C(d) in (3.17) is simply a tail segment of

A(d). In Figure 3.5, C(6) consists of steps 35 to 88 of A(6). Step 34 of A(6) is the edge

in Q joining the paths β(B(6)) and C(6), represented by the “+” sign in (3.17) as defined

before Theorem 3.9.

To illustrate equation (3.18), note that C(6), beginning with step 35 of A(6), starts like

π(4,1) shown in Figure 3.3, which is A(4). The bitstrings in A(4) are written backwards

and extended by inserting a zero bit at the front and adding the bits 110 at the end of the

bitstring in each polytope. This is done by the mapping α, which is defined in (3.21) , as

are the other mappings in (3.18) and (3.19).

Proof of Theorem 3.9: Overview: The mappings are given as follows: β and β′ are defined

on G(d)×G(d), where

β(u,v) = (u,0v2v3 . . .v2d−21v2d). (3.20)

The mapping β′ applies to a final segment of the the path A(d), which is symmetric as

stated in Lemma 3.4. Hence, β′ is determined by β, which applies to an initial segment

of A(d) (see (3.23) below). The other mappings are α,γ,γ ′ : G(d − 2)×G(d − 2)→

G(d)×G(d). With u← defined as the bitstring u reversed,

α(u,v) = (0u←110,0v←110). (3.21)

With c = 2d−4,

γ(u1 . . .uc,v) = (u111u2 . . .uc00,10v01). (3.22)
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The mapping γ ′ in (3.19) applies to a final segment of B(d), which, as we will show, starts

after the midpoint of B(d). Thus, γ ′ is determined by γ due to the symmetry of B(d) stated

in Lemma 3.5.

First we show the following equation, which is equivalent to (3.17) and (3.18):

A(d) = β(B(d))+α(A(d−2))+β′(B(d)). (3.23)

Note that only positions 1 and 2d− 1 in Q (corresponding to the missing label in A(d)

and B(d), respectively) are changed by the mapping β, and these positions are constant

throughout B(d) by (3.6) and (3.8). The starting point (u1,v1) of B(d) is given by (3.9),

and in the first step of B(d) label 1 is dropped in P. The path A(d) is also started by

dropping label 1 in P from ed
0 . Now β(u1,v1) = ed

0 , as required, and in the first step of

A(d) and B(d) the label to be dropped is 1 in P. As (u1,v1) and ed
0 differ only in positions

that are constant throughout B(d), the path B(d) maps to β(B(d)) and thereby represents

the initial part of A(d). For d = 6, Figures 3.4 and 3.5 show how steps 2 to 34 of π(6,12)

map to steps 1 to 33 of A(6) in this way. By (3.10), the endpoint of β(B(d)) is

β(0d−11d0,1d−10d1) = (0d−11d0,01d−20d−111). (3.24)

The duplicate label is 2d−1, which has been picked up in P. So in the next step of A(d)

(which is step 34 in Figure 3.5), label 2d− 1 is dropped in Q and label 2d− 3 is picked

up, giving the vertex pair

(u∗,v∗) = (0d−11d0,01d−20d−2110). (3.25)

(For the path π(d,2d), label d would be picked up instead at this stage, as in step 35 in

Figure 3.4.) This is the edge of A(d) which joins β(B(d)) to α(A(d−2)) in (3.23).

We are now at the start of C(d) and want to show that this path segment starts with

α(A(d−2)) with α in (3.21). Indeed, the starting vertex pair of C(d) is (u∗,v∗)=α(ed−2
0 ).

The duplicate label is 2d− 3, which is to be dropped in P in the next step (step 35 in

Figure 3.5). The subsequent steps are represented by α(A(d− 2)), since in the lower-

dimensional polytope, label 1 is dropped, which is mapped by α to label 2d− 3 of the

higher-dimensional polytope; here, we consider α also as an injective map of labels, ob-

tained in the obvious way from (3.21), namely α(k) = 2d− 2− k for 1 ≤ k ≤ 2d− 4.

Essentially, the subsequent steps in A(d−2) map into higher dimension by (3.21) and by
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Lemma 3.6; we only need to check complementarity of the constant positions in higher di-

mension. In the higher dimension, position 1 with the missing label 1 is zero in both poly-

topes, consistent with (3.21). Positions 2d−1 and 2d are also complementary by (3.21).

For positions 2d−3 and 2d−2, we have complementarity because 2d−3 is zero, since

it is obtained from the position with the missing label 1 in lower dimension. This shows

that the initial segment of C(d) is indeed α(A(d−2)).

In the last step of A(d−2), label 1 is picked up in Q (this is step 20 in Figure 3.3). So in

the last step of α(A(d−2)), label 2d−2 is picked up in Q (this is step 54 in Figure 3.5).

Then we are at the vertex pair (v∗,u∗) = α(ed−2
1 ), which is (01d−20d−2110,0d−11d0)

by (3.25). We have shown that the initial part of A(d) in (3.23) is β(B(d))+α(A(d−2))

and that the starting point and endpoint of α(A(d− 2)) are (u∗,v∗) and (v∗,u∗), respec-

tively. Then the rest of the path A(d) in (3.23) is obtained by Lemma 3.4: The next vertex

pair, obtained from (v∗,u∗) by dropping label 2d−2 in P (step 55 in Figure 3.5), is

(u′,v′) = (01d−20d−111,0d−11d0), (3.26)

which agrees with Lemma 3.4 and its symmetric counterpart in (3.24) (in Figure 3.5,

step 34 backwards). Thus, the remainder is the path β(B(d)) backwards but with the

bitstrings for P and Q exchanged. Using the symmetry of B(d) in Lemma 3.5, this part

of the path can be expressed as β′(B(d)) with a suitably defined mapping β′, similar to β,

which exchanges the bitstrings for P and Q. This shows (3.23).

We now show (3.19). The first part of B(d) is indeed γ(A(d− 2)): Both B(d) and

A(d− 2) start by dropping label 1 in P, and the starting point of B(d) is γ(ed−2
0 ). Then

B(d) proceeds like γ(A(d− 2)) because of Lemma 3.6 and since complementarity holds

for the constant positions in higher dimension, which is easily checked using (3.22). Next,

by (3.23),

γ(A(d−2)) = γ[β(B(d−2))+α(A(d−4))+β′(B(d−2))]. (3.27)

Now consider the starting point (u′′,v′′) of β′(B(d−2)), which is (u′,v′) given by (3.26)

but with d−2 instead of d. (For d = 6, (u′′,v′′) is the start of step 14 of A(4) in Figure 3.3.)

Furthermore, consider the endpoint of β′(B(d−2)), that is, the endpoint ed−2
1 of A(d−2).
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The images of these points under γ are

γ(u′′,v′′) = γ(01d−40d−311,0d−31d−20) = (01d−20d−31100,10d−21d−2001)

γ(ed−2
1 ) = γ(0d−21d−2,1d−20d−2) = (0110d−31d−200,101d−20d−11).

(For d = 6, these two points are, respectively, the beginning of step 15 and the end of

step 21 of π(6,12) in Figure 3.4, corresponding to steps 14 and 20 of B(6).) These two

vertex pairs γ(u′′,v′′) and γ(ed−2
1 ) are point-symmetric images of each other under the

symmetry of B(d) described in Lemma 3.5. This means that the endpoint γ(ed−2
1 ) of

γ(A(d−2)) is already in the second half of B(d). The central part of B(d) (steps 15 to 21

in Figure 3.4), given by the last part of γ(A(d−2)) in (3.27), is γ[β′(B(d−2))]. Therefore,

there is a mapping γ ′ so that

B(d) = γ[β(B(d−2))+α(A(d−4))+β′(B(d−2))]+ γ ′[α(A(d−4))+β′(B(d−2))],

because the paths A(d− 4) and B(d− 2) are symmetric and therefore do not have to be

written backwards. This representation of B(d) is equivalent to (3.19), as claimed.

Let an be the number of vertex pairs of A(2n), which is one more than the length

L(2n,1) of that path. Let bn and cn be the number of vertex pairs of B(2n) and C(2n),

respectively. That is,

an = L(2n,1)+1, bn = L(2n,4n)−2 (n≥ 1). (3.28)

Then the concatenation of paths in (3.17) implies an = bn + cn, in (3.18) cn = an−1 +bn,

and in (3.19) bn = an−1 + cn−1. Moreover, the paths π(2,1) and π(2,4) have length 4 =

a1− 1 = b1 + 2. This shows that the numbers b1,c1,a1,b2,c2,a2, . . . are the Fibonacci

numbers 2,3,5,8,13,21, . . . given by

f0 = 1, f1 = 2, fn+1 = fn + fn−1 (n≥ 1), (3.29)

that is,

an = f3n, bn = f3n−2 (n≥ 1). (3.30)

So both the lengths of π(d,1) and of π(d,2d) for even d = 2n = 2,4,6, . . . are given

by every third Fibonacci number (minus one and plus two, respectively). These are the

longest paths. They occur several times, since, as shown next, L(d,1) = L(d,d) and

L(d,d + 1) = L(d,d + 2) = L(d,2d− 1) = L(d,2d). This is due to the symmetry of the
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Figure 3.5 The path A(6) = π(6,1).
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Gale evenness condition and of the labellings. Other paths π(d,k) are given as concatena-

tions of these paths in lower dimension. They are characterized, for all possible missing

labels k, in the following theorem.

Theorem 3.10 The LH path lengths for any missing label are characterized by (3.28),

(3.29), (3.30), and

(a) L(d,k) = L(d,d +1− k) and L(d,d + k) = L(d,2d +1− k), for 1≤ k ≤ d;

(b) L(d,k)= L(d,k+1) for even k when 2≤ k≤ d−2, and odd k when d+1≤ k≤ 2d−1;

(c) L(d,k) = L(k,1)+L(d− k,1) for even k and 2≤ k ≤ d−2;

(d) L(d,d + k) = L(k,2k)+L(d− k+2,2(d− k+2))−4 = bk/2 +bd/2−k/2+1 when k is

even and 2≤ k ≤ d−2.

The proof of this theorem is similar to the proofs of Lemma 3.5 and Theorem 3.9.

Examples of paths where Theorem 3.10 applies can be found in Appendix A.2. Using

(b), cases (c) and (d) cover all possible missing labels. Before we prove Theorem 3.10,

we prove two lemmas.

For any paths A and B on G(d)×G(d), considered as sequences of vertex pairs, let

AB denote the path A joined to the path B, where the endpoint of A is equal to the starting

point of B. The length (number of edges) of AB is the sum of the lengths of A and B. The

next lemma uses this concatenation of paths.

Lemma 3.11 Let k be even and 2≤ k ≤ d−2. Then

π(d,k) = α(A(k))β(A(d− k)) (3.31)

with α : G(k)×G(k)→ G(d)×G(d) = P×Q,

α(u,v) = (uk · · ·u11d−k0d−ku2k · · ·uk+1,vk · · ·v10d−k1d−kv2k · · ·vk+1), (3.32)

and β : G(d− k)×G(d− k)→ G(d)×G(d),

β(u,v) = (0ku1k,1kv0k). (3.33)

Furthermore, no edge of the path π(d,k) crosses position 2d− k or 2d− k+1.

45



Proof: The starting point of π(d,k) is ed
0 . As required, α(ek

0) = ed
0 . In the first step of

π(d,k), label k is dropped in P. Position 1 of the lower dimensional polytopes, given by

the bits u1 and v1 in (3.32), is mapped by α to position k in both P and Q in the higher

dimension. In P, position k has label k, which is missing in π(d,k). This missing label

in the higher dimensional polytope P corresponds to the missing label 1 in the lower

dimension. The last position 2k in the lower dimension, with bits u2k and v2k, is mapped

to position 2d− k+1 in the higher dimension. By Lemma 3.6, no edge of the path A(k)

crosses the positions 1 and 2k in the lower dimension, so inserting the substrings 1d−k0d−k

or 0d−k1d−k between these bits, as done in (3.32), gives edges in P and Q, respectively.

Furthermore, no edge of α(A(k)) crosses position 2d− k or position 2d− k+1.

The mapping α preserves the cyclic adjacency of labels. The first L(k,1) steps of

π(d,k) are given by α(A(k)) if the positions k+1 up to 2d− k of the higher dimensional

polytopes are complementary. Complementarity of positions k+ 2, . . . ,2d− k is imme-

diate. Positions k and k+ 1 in P and Q, respectively, correspond to the missing label k

of π(d,k) and are thus both zero throughout. Finally, the bit in position k+ 1 in P, with

label k+ 1, is 1 according to (3.32). That bit is complementary to the bit in position k

in Q, which has label k+ 1, since this bit corresponds to the missing label in the lower

dimensional polytope and is therefore zero throughout.

After L(k,1) many steps, the vertex pair α(ek
1) is reached, where

α(ek
1) = (0k1d−k0d−k1k,1k0d−k1d−k0k) = β(ed−k

0 ).

This is also the starting point of β(A(d− k)), as required. In a similar way as before, one

can see that this is the second part of π(d,k), which ends in β(ed−k
1 ) = ed

1 . Lemma 3.6

for the lower-dimensional polytope and equation (3.33) imply that no edge of β(A(d−k))

crosses position 2d− k or 2d− k+1.

Lemma 3.12 Let k be even and 2≤ k ≤ d. Then

π(d,d + k) = ed
0 + γ(B(k)) δ(B(d− k+2))+ ed

1 , (3.34)

where γ : G(k)×G(k)→ G(d)×G(d) = P×Q,

γ(u,v) = (u11d−ku2 · · ·u2k0d−k,v10d−kv2 · · ·v2k1d−k), (3.35)
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and δ : G(d− k+2)×G(d− k+2)→ G(d)×G(d) = P×Q,

δ(u,v) = (vd−k+2 · · ·v2d−2k+2 0k−21k0v2 · · ·vd−k+1,

ud−k+2 · · ·u2d−2k+2 1k−2u2d−2k+30k−1u1 · · ·ud−k+1).

No edge of π(d,d + k) crosses position d + k or d + k+1 in P.

Proof: According to (3.34), π(d,d + k) is the concatenation of two paths in dimensions k

and d− k+2. These do not sum to d, unlike in (3.31). This works because in the vertex

pair δ(u,v), the vertex in P is obtained from v by ignoring the bits v1, v2d−2k+3, which are

constant throughout B(d−k+2) by Lemma 3.5, and adding 2k−1 constant bits, and the

vertex in Q is obtained from u by ignoring the bit u2d−2k+4 and adding 2k− 3 constant

bits.

It can be verified that both γ and δ preserve the adjacency of the labels used by the LH

path, and complementarity. The path π(d,d+k) starts as follows: In step 1, label d+k is

dropped from ed
0 in Q. The new vertex pair is (1d0d,10d−11k−201d−k+1), which is equal

to γ(u1,v1) for the first vertex pair (u1,v1) of B(k), as in (3.9) (with k instead of n). Then

the path continues as described in (3.35) because, by Lemma 3.5, it first drops label 1

in P, and never picks it up again, and because the bits v1 and v2k in (3.35) stay constant

according to (3.6). The last vertex pair of γ(B(k)) is, by (3.10) and (3.35), equal to

γ(0k−11k0,1k−10k1) = (01d−k0k−21k0d−k+1,10d−k1k−20k1d−k+1).

This is equal to δ(1d−k+20d−k+2,10d−k+11d−k01), which is δ applied to the first vertex

pair of B(d−k+2), using (3.9) with d−k+2 instead of d. The duplicate label is d+k−1,

and is to be dropped in Q. The corresponding bit is in position d−k in Q, and is the image

of the bit u1 under δ. As stated at the end of Lemma 3.5, this bit u1 is indeed changed to

zero in the first step of B(d− k−2). The last vertex pair of δ(B(d− k+2)) is

δ(0d−k+11d−k+20,1d−k+10d−k+21) = (0d−11k01d−k,1d0d)

with duplicate label d. This label has just been picked up in Q, and the corresponding bit

in position d is the image of bit u2d−2k+3 under δ. When label d is then dropped in P, the

endpoint ed
1 is reached, which terminates the path π(d,d + k). This completes the proof

of (3.34).
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Proof of Theorem 3.10: For (a), let ψ be defined by ψ(k) = d− k+1 and ψ(d + k) =

2d− k+1 for k = 1, . . . ,d. This is a cyclic shift by d followed by a reversal of positions,

which leaves the set G(d) invariant, and maps ed
0 to itself. Furthermore, ψ commutes

with the labellings l and l′ of P and Q. Consequently, when the positions of the bitstrings

representing the vertex pairs on the path π(d,k) are permuted by ψ, one obtains the path

π(d,d− k+1), which has therefore the same length as π(d,k).

To show (b), let 2≤ k ≤ d−2. As in Lemma 3.4, the relabelling l′ in (3.3) applied to

both P and Q shows that π(d,k) corresponds to the path π(d,k+ 1) backwards, so these

paths have the same length.

Claim (c) follows from (3.31) in Lemma 3.11.

According to (3.34) in Lemma 3.12, the length of π(d,d+k) is the sum of the lengths

of B(k) and of B(d−k+2) plus two (for the first edge from ed
0 and last edge to ed

1), which

shows (d).

It is easy to see that the shortest path lengths are obtained as follows: If d is divisible

by four, that is, d/2 is even, then the shortest path length occurs for missing label d/2, and

is given by L(d,d/2) = 2ad/4− 2 according to Theorem 3.10(c). If d/2 is odd, then the

shortest path length occurs for missing label 3d/2, where L(d,3d/2) = L(d,3d/2+1) =

2bd/2+1/2 by Theorem 3.10(b) and (d). When d/2 is even, the path when dropping label

3d/2 is only two steps longer than when dropping label d/2 since then L(d,3d/2) =

bd42+bd/4+1 = bd/4+ad/4+cd/4 = 2ad/4. Therefore, the shortest path results essentially

when dropping label 3d/2.

The Fibonacci numbers (3.29) have the well-known explicit expression (see, for ex-

ample, Graham, Knuth, and Patashnik (1994))

fn = Kϕn +K ϕ n, ϕ,ϕ = 0.5±0.5
√

5, K,K = 0.5±0.3
√

5,

where ϕ = 1.618 . . . is the Golden Ratio and K = 1.170 . . .. Then fn is Kϕn rounded to the

nearest integer since K ϕ n is less than 0.5 and at any rate exponentially small. By Theo-

rem 3.10(d), the sequence of shortest LH path lengths L(2n,3n) for n = d/2 = 1,2,3, . . .

is 4,10,16,42,68,178, . . . , which is the sequence of Fibonacci numbers (multiplied by

two) with every third number omitted. These shortest lengths grow with the square root

of the longest lengths, which is still exponential.
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Corollary 3.13 There are d× d games, for even d, where the length of each LH path is

at least proportional to ϕ3d/4.

A construction using a similar labelling to (3.3) is possible for odd d, but there the path

lengths are less symmetric than those in Theorem 3.10 for even d. We do not need this

since it is trivial to obtain an odd-dimensional game from the next lower even dimension

by adding a strictly dominated strategy for each player.

Not all almost complementary vertex pairs are part of the LH paths we have analysed

so far. The almost complementary edges can form cycles, rather than being part of an LH

path that leads to an equilibrium. We end the section with Figure 3.6, an example of an

explicit cycle for dimension 6 and missing label 1.

step 1 2 3 4 5 6 7 8 9 10 11 12 1 3 2 5 4 6 8 7 10 9 12 11 step
· · · 1 1 1 1 1

v

1 · · ·
1 〈 ·

v

1 1 · · · · · 1 1 1 1

· ·
v

1 1

v

1 1 1 1 · · · · 〉 2
3 〈 · · 1

v

1 · · · · 1

v

1 1 1

· · 1 1 · 1

v

1 1

v

1 · · · 〉 4
5 〈 · · 1

v

1 · · ·
v

1 1 · 1 1

· ·
v

1 1

v

1 1 · 1 1 · · · 〉 6
7 〈 ·

v

1 1 · · · ·
v

1 1 · 1 1

· · · 1 1 1

v

1 1 1 · · · 〉 8
· 1 1 · · · · · 1

v

1 1 1

Figure 3.6 A cycle of almost complementary edges in dimension 6 with missing label 1.

3.5 Non-square games Γ(d,2d) and support enumeration

So far, we have analyzed the d×d games Γ(d,d). They have a unique equilibrium which

is found by the LH algorithm after an exponential number of steps, for any missing label.

However, the equilibrium is completely mixed, and is easily found by support enumera-

tion (e.g., Dickhaut and Kaplan (1991), Porter, Nudelman, and Shoham (2004), or Bárány,

Vempala, and Vetta (2005)). This simple algorithm tests the possible supports of equal

size for both players, and checks if equating the expected payoffs to the other player in

his support defines mixed strategies that are best responses to each other. There is only

one pair of supports where both players use d strategies, so this is tested quickly.

In this section, we consider the d× 2d games Γ(d,2d). By Lemma 3.2, in any Nash

equilibrium of such a game, both players use mixed strategies with support size d. The

following lemma states that for player 2, the supports of equilibrium strategies form only

49



an exponentially small fraction of the possible
(2d

d

)
supports of size d. The notation

S(d/2) is chosen to be consistent with von Stengel (1999).

Lemma 3.14 Let S(d/2) be the set of bitstrings of length 2d containing d ones of the

form s1s2 . . .sk where each substring si is either 00, 11, or 0110. Then (u,v) is a Nash

equilibrium of the game Γ(d,2d) if and only if u= 0ds and v= 1dt for s, t ∈ S(d/2), where

s = s1s2 . . .sk and t = t1t2 . . . tk, and ti is 11, 00, or 0110 if and only if si is 00, 11, or 0110,

respectively, for 1≤ i≤ k. Asymptotically,

|S(d/2)| ≈ 0.81
2.414d
√

d
,

(
2d
d

)
≈ 0.56

4d
√

d
. (3.36)

Proof: It is easy to see that the described bitstrings define Nash equilibria. The claims

follow from von Stengel (1999): As in Proposition 3.2 of that paper, one can see that these

are the only equilibria. An exact expression for the size of S(d/2) is (3.6) on p. 564, and

p. 566 gives an asymptotic formula, denoted by σ̃(d/2) (for convenience, these formulas,

and a table with the corresponding values for small d are given in Section A.3), with

rounded parameters as in (3.36). The expression for
(2d

d

)
is based on Stirling’s formula.

The following theorem shows that the LH paths for Γ(d,2d) are exponentially long,

since they are closely related to the paths of the square game Γ(d,d), which have length

L(d,k) when dropping label k.

Theorem 3.15 Let M(d,k) be the length of the LH path in the game Γ(d,2d) when drop-

ping label k, for 1≤ k ≤ 3d. Then

(a) M(d,k) = M(d,d +1− k) and M(d,d + k) = M(d,3d +1− k), for 1≤ k ≤ d;

(b) M(d,k) = L(d,k) for even k and 2≤ k ≤ d;

(c) M(d,d + k) = L(d,d + k) for even k and 1≤ k ≤ d;

(d) M(d,2d + k) = L(d,1)+1 for even k and 1≤ k ≤ d.

By condition (a) of this theorem, it suffices to consider only even labels k in conditions

(b), (c), and (d), so these cover all possible missing labels k.
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Proof of Theorem 3.15: Claim (a) is proved in the same way as Theorem 3.10(a), with the

permutation ψ of {1, . . . ,3d} defined by ψ(k) = d +1− k for 1 ≤ k ≤ d and ψ(d + k) =

3d +1− k for 1≤ k ≤ 2d.

For (b), (c), (d), let k be even and 2 ≤ k ≤ d. We consider the mappings ε,ζ,η :

P×Q = G(d,2d)×G(d,2d)→ G(d,3d)×G(2d,3d) defined by

ε(u,v) = (u1 · · ·u2d−k0du2d−k+1 · · ·u2d,v1 · · ·v2d−k1dv2d−k+1 · · ·v2d), (3.37)

ζ(u,v) = (u1 · · ·ud+k0dud+k+1 · · ·u2d,v1 · · ·vd+k1dvd+k+1 · · ·v2d), (3.38)

η(u,v) = (u0d,1v2 · · ·v2d1k−2v11d−k+1). (3.39)

Let ρ(d, j) be the LH path for the game Γ(d,2d) with missing label j, for any j =

1, . . . ,3d. We show that ρ(d,k) = ε(π(d,k)). Both paths start by dropping the same la-

bel k. If k < d, then by Lemma 3.11, no edge of the path π(d,k) crosses position 2d−k or

2k−k+1. This holds also when k = d, since by Theorem 3.10(a), π(d,d) corresponds to

π(d,1), and Lemma 3.6 implies that π(d,d) does not cross positions d and d +1. There-

fore, it is possible to insert between positions 2d− k and 2k− k+1 the bitstring 0d in P,

and 1d in Q, as in (3.37), which implies ρ(d,k) = ε(π(d,k)), as claimed. This proves (b).

Next, we show that ρ(d,d+k) = ζ(π(d,d+k)). By Lemma 3.12, no edge of π(d,d+

k) crosses position d + k or d + k + 1 in P, so it is possible to insert the bitstring 0d

between these positions, as done in (3.38). To obtain complementarity, 1d is inserted

between positions d + k and d + k+ 1 in Q. These positions in Q are crossed by some

edges of the path π(d,d+k), but because a contiguous string of 1’s is inserted, those steps

of π(d,d + k) are mapped by ζ to the respective steps of ρ(d,d + k) as well. This shows

the claim, giving (c).

Finally, we show ρ(d,2d + k) = (1d02d,0d12d)+η(π(d,1)). Dropping label 2d + k,

the first step of ρ(d,2d + k) reaches the vertex pair (1d02d,10d−11d1k−201d−k+1), which

is equal to η(ed
0). In this vertex pair, the duplicate label is 1, which is dropped in P

in the next step 2 of ρ(d,2d + k). Beginning with this step, ρ(d,2d + k) is equal to

η(π(d,1)) (from step 1 onwards), for the following reasons: the vertex pairs are almost

complementary; by Lemma 3.6, the bitstring 0d can be inserted at the end of u in (3.39),

and 1k−2 can be inserted between v2d and v1; finally, 1d−k+2 can be cyclically inserted
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between positions v1 and v2, which does not affect the steps in the second polytope. This

proves (d).

In any Nash equilibrium of the game Γ(d,2d), the strategy of player 1 has full support.

The supports of equilibrium strategies of player 2 define the set S(d/2). By (3.36), these

form an exponentially small fraction F ,

F =
|S(d/2)|(2d

d

) ≈ 1.44×0.6d (3.40)

of all supports of size d for player 2 (the support of size d for player 1 is unique). This is

the success probability F of a support enumeration algorithm that tests a single random

support of size d. We show in Lemma 3.16 that a support enumeration algorithm that

tests d-sized supports of player 2 uniformly at random (without replacement) has to test

an exponential number of supports on average before finding an equilibrium. In this

lemma, the set S(d/2) is called E. Let U be the set of all d-sized subsets of {1, . . . ,2d},

so |U |=
(2d

d

)
.

Lemma 3.16 Consider a d× 2d game where a pair of supports defines a Nash equilib-

rium if and only if both supports have size d, and player 2’s support belongs to the set E,

a set of d-sized subsets of {1, . . . ,2d}. A support enumeration algorithm that tests sup-

ports picked uniformly at random without replacement from the set of all d-sized subsets

of {1, . . . ,2d} has to test an expected number of(2d
d

)
−|E|

|E|+1
+1 (3.41)

supports before finding an equilibrium support.

Proof: To find the expected number of guesses required to find an equilibrium we use

a standard argument (Motwani and Raghavan (1995), p. 10). Assume some order of

enumeration for the elements of U . The elements of U \E, which we index by i, with

1≤ i≤
(2d

d

)
−|E|, correspond to non-equilibrium supports. Let Wi be the indicator vari-

able that takes the value 1 if the ith element of U \E precedes all members of E in the

enumeration of U , and 0 otherwise. Then W = ∑|U |−|E|i=1 Wi is the random variable equal

to the number of supports checked before the first equilibrium is found. Then, using the

linearity of expectation, we have

EW =E(
|U |−|E|

∑
i=1

Wi) =
|U |−|E|

∑
i=1

E(Wi) =
|U |−|E|

∑
i=1

1
|E|+1

=

(2d
d

)
−|E|

|E|+1
.
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This shows that the expected number of support guesses until an equilibrium is found

is given by (3.41), as claimed.

For E = S(d/2), the number in (3.41) is about 0.7× 1.66d . Support enumeration

therefore takes exponential time on average for a game Γ(d,2d) 1.

Corollary 3.17 There are d×2d games, for even d, where the length of each LH path is

at least proportional to ϕ3d/4 ≈ 1.43d , and where a support enumeration algorithm has to

test on average about 0.7×1.66d many supports of size d before it finds an equilibrium.

It is natural to ask if we can construct games that are “hard to solve” even if details of

the construction are known. If an algorithm knows the set E, it could simply pick a mem-

ber of E. To avoid this, suppose we randomly permute the columns of the game with a

uniformly chosen random permutation p. This is equivalent to permuting the positions of

bitstrings in the set E with p, thus giving a new set of equilibrium supports Ē. For the LH

algorithm, the permutation does not affect the possible path lengths. How effectively does

this “hide” the equilibrium supports from a support enumeration algorithm that knows E?

First, we consider a general set E (not necessarily S(d/2)). If a support enumeration

algorithm knows the set E (but of course not Ē), it may be possible to do better than test

a random sequence of a supports. That is, a random permutation of the strategies cannot

completely “hide” the structure of E. For example, if E = {u∈U | u1 = 1}, so equilibrium

supports are exactly those that use the first strategy, an element of Ē can be found in at

most two guesses for anty d, by testing a bitstring x and then its complement x̄.

What about for the games Γ(d,2d), where E = S(d/2)? In fact, in this case it is also

possible to do better than testing a completely random order of supports, by exploiting the

structure of E. We give an example for d = 2, so S(d/2) = S(1) = {1100,0011,0110}.

Denote by p−1 the inverse of p. The following enumeration order is better than random:

For the first guess, test any bitstring u in U . The second guess is derived from the first

guess by swapping a single zero bit with a single one bit of u uniformly at random to give

u′ (there are four ways to do this). The third guess is derived from the first guess u by

swapping a different 0/1 pair uniformaly at random to give u′′ (i.e., swapping one of the

1When looking at all potential supports, rather than just those with full support for the player with d

strategies, the number of guesses is obviously even larger, although Lemma 3.16 no longer applies.
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remaining three 0/1 pairs). The fourth guess can be any support not tested so far, since

this will be an equilibrium.

If the first guess u is not an equilibrium, then p−1(u) ∈ {1010,0101,1001}. This

occurs with probability 1/2. If p−1(u) ∈ {1010,0101}, then u′ will be an equilibrium

for three out of the four possible swaps of 0/1 pairs (only if p−1(u′) = 1001, is u′ not an

equilibrium). If p−1(u) = 1001, then u′ will be an equilibrium for two of the four possible

swaps of 0/1 pairs (only if p−1(u′) ∈ {1010,0101}, is u′ not an equilibrium). Thus, using

Baye’s rule, if the first and second guess are unsuccesful, with probability 1/2 we have

p−1(u′) = 1001 (and the third guess is defnitely successful), and with probaility 1/2 we

have p−1(u′)∈ {1010,0101} (and the third guess is successful with probability 2/3). This

gives an expected number of guesses of

1∗ (1/2)+

2∗ (1−1/2)(2/3∗3/4+1/3∗1/2)+

3∗ (1−1/2)(1− (2/3∗3/4+1/3∗1/2))(1/2+1/2∗2/3)+

4∗ (1−1/2)(1−2/3)(1− (1/2+1/2∗2/3))

=1∗1/2+2∗2/3+3∗5/36+4∗1/36

=1
25
36

= 1.69444...

Thus, this support enumeration scheme beats a completely random one, which gives a

expected number of guesses of 1.75. It is open whether it is possible to devise a sequence

of supports using E = S(d/2) that give a polynomial number of expected guesses before

finding an element of Ē; it seems unlikely that this is possible. In any case, this question

is somewhat artificial, since there is no reason to suppose that one would know the set E,

but not the whole construction. Knowing the precise construction of Γ(d,2d), with the

complete structure of the polytopes, except for the random permutation of the columns, it

is possible to find an equilibrium in d very special pivoting steps; we describe this method

in Section 3.6. However, these steps are not in any way suitable for finding an equilibrium

of a general bimatrix game.

The games Γ(d,2d) with randomly permuted columns seem to be “hard to solve” for

any known general-purpose algorithm that finds a Nash equilibrium of a bimatrix game.

Enumerating the vertices of the polytopes P or Q in (2.4) is another way of finding an

equilibrium (see von Stengel (2002) for a survey). A natural starting point for vertex enu-
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meration is the vertex pair (0,0) of P×Q. In both polytopes, any Nash equilibrium vertex

is at least d edges away from that starting point by Lemma 3.2, and there are an exponen-

tial number of such vertices. Therefore, one should expect that finding an equilibrium by

vertex enumeration takes long as well. Since there are many vertex enumeration methods,

an analysis is not attempted here. So far, the games Γ(d,2d) seem hard for any general

algorithm that finds an equilibrium of a bimatrix game.

3.6 Quickly finding an equilibrium of Γ(d,2d) with per-

muted columns

In this section, we describe a specialized method that finds one Nash equilibrium of a

game Γ(d,2d) with randomly permuted columns in d pivoting steps; it is not a general

method, and only works for these games.

For a game Γ(d,2d) (without randomly permuted columns) the equilibrium supports

of player 2 are given by Lemma 3.14. In particular, following the notation of that lemma,

one equilibrium is given by s = 1d0d, t = 0d1d , that is,

(u,v) = (0d1d0d,1d0d1d), (3.42)

which corresponds to player 2 playing her first d strategies (columns). Assume that a

permutation π of {1, . . . ,2d} is used to permute the columns of a game Γ(d,2d) = (A,B),

to give new payoff matrices (A,B).

The best response polytopes of the game (A,B) are

P = {x ∈ Rd | x≥ 0, B⊤x≤ 1}, (3.43)

Q = {y ∈ R2d | Ay≤ 1, y≥ 0}, (3.44)

which are identical to the polytopes

P = {x ∈ Rd | x≥ 0, B⊤x≤ 1}, (3.45)

Q = {y ∈ R2d | Ay≤ 1, y≥ 0} (3.46)

except that the order of the inequalities B⊤x≤ 1 of P and y≥ 0 of Q have been permuted

by π to give B⊤x≤ 1 and y≥ 0. So, for i = 1 . . .d, label i corresponds to inequality i in P.
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For i = d + 1 . . .3d, label i corresponds to inequality π(i− d)+ d. The method finds the

equilibrium of (A,B) that corresponds to (3.42) using the Gale evenness condition, and

by pivoting in P, the best response polytope of player 1.

The origin is a vertex of P and is represented by the bitstring 1d02d , where the first d

inequalities in (3.43), which correspond to x ≥ 0, are tight. We pivot away from the

origin in P by dropping label 1 (the variable x1 enters the basis, and we leave the facet

corresponding to x1 = 0). We reach a new vertex v1, picking up label π(1)+d. Next, we

drop label d from v1, thereby reaching the a new vertex v2, and picking up label π(2)+d.

We perform d− 2 more pivoting steps. For i = 2, . . . ,d− 1, we drop label π(i− 1)+ d

(which was picked up in the previous step) from vi, thereby reaching the vertex vi+1, and

picking up label π(i+ 1) + d. We can now stop, since we have found an equilibrium

(we could continue pivoting in this manner to discover the complete permutation π). An

equilibrium support of player 2 is given by the strategies corresponding to columns {π(i) :

i = 1, . . .d}. We illustrate the case d = 4 in the Figure 3.7.

What if the rows are permuted as well? We can still find an equilibrium quickly, now

in at most 2d + 1 steps. The method first does between 2 and d + 1 pivots in Q. These

pivot steps reveal the two rows in A that the permutation has mapped from the rows 1 and

d in A, although we cannot distinguish between them. The method then does d pivots in P,

as above. However, since we cannot distinguish between π(1) and π(d), either we find the

equilibrium corresponding to (3.42), as before, or we find the equilibrium corresponding

to (u,v) = (02d1d,12d0d).

3.7 Morris’s construction, the games ΓM(d), and imita-

tion games

Morris (1994) considers “Lemke paths” on simple d-dimensional polytopes T with 2d

facets. A vertex v of T is given, and the d facets incident to v have labels 1, . . . ,d. The

remaining d facets have also labels 1, . . . ,d, so each label appears twice. A Lemke path

starts at v by dropping a label k and traversing the unique edge leaving the facet with la-

bel k. The endpoint of that edge is a new facet which has either label k, which terminates

the path, or a duplicate label, which is then dropped by leaving the other facet with that
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labels in P 1 2 3 4 5 6 7 8 9 10 11 12

labels in P 1 2 3 4 π(1)+d π(2)+d π(3)+d π(4)+d π(5)+d π(6)+d π(7)+d π(8)+d

0 ∈ P 1 1 1 1 0 0 0 0 0 0 0 0

v1 0 1 1 1 1 0 0 0 0 0 0 0

v2 0 1 1 0 1 1 0 0 0 0 0 0

v3 0 1 1 0 0 1 1 0 0 0 0 0

v4 0 1 1 0 0 0 1 1 0 0 0 0

eq. support 0 0 0 0 1 1 1 1 0 0 0 0

Figure 3.7 Permuted labels of Γ(d,2d) with d = 4.

label. The path continues in that manner until another completely labelled vertex is found.

Applied to the polytope S as in (2.1) with vertex v = 0, with facet labels 1, . . . ,d for the

inequalities z ≥ 0, and 1, . . . ,d for Cz ≤ 1, we have called this the symmetric LH algo-

rithm. Any polytope T with vertex v can be affinely mapped to S with v mapped to 0. By

Lemma 2.2, the completely labelled vertices (apart from 0) then correspond to the sym-

metric equilibria of the symmetric bimatrix game (C,C⊤). However, this interpretation is

not considered in Morris (1994).

Morris constructs exponentially long Lemke paths by taking for T the dual cyclic

polytope in dimension d with 2d facets, for both odd and even d, suitably labelled as

follows. In Section 3.2, we have identified such a polytope with the set G(d,2d) of Gale

evenness bitstrings, which describe the vertices of T in terms of the facets they lie on. In

the order of the bits in those bitstrings, the facets 1, . . . ,2d are given the labels

l(k) = k, 1≤ k ≤ d, l(d + k) =



d, k = 1,

d− k, k even and 2≤ k < d,

d +2− k, k odd and 2≤ k ≤ d,

1, k even and k = d.

(3.47)

For d = 6, for example, the 12 facets, corresponding to the positions in a bitstring in

G(6,12), are labelled with 1,2,3,4,5,6,6,4,5,2,3,1. Denote the bimatrix games (C,C⊤)

obtained from Morris’s examples by ΓM(d). In analogy to Corollary 3.3, it is easy to see
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that then the only completely labelled vertices of T are 1d0d (which is the starting point v

of a Lemke path, our artificial equilibrium), and 0d1d , which corresponds to a completely

mixed symmetric equilibrium.

However, these bimatrix games ΓM(d) have a large number of nonsymmetric equi-

libria, in particular two pure strategy equilibria that are always found by the ordinary,

nonsymmetric LH algorithm after two or three steps, for any missing label. For illustra-

tion, we consider the game ΓM(6). Since the bimatrix game (A,B) is (C,C⊤), the two

polytopes P and Q in (2.4) are

P = {x ∈ Rd | x≥ 0, Cx≤ 1}, Q = {y ∈ Rd |Cy≤ 1, y≥ 0}, (3.48)

so they are the same polytopes as S in (2.1), except that the first d inequalities x ≥ 0

in P are labelled with 1,2, . . . ,d, whereas these inequalities y ≥ 0 in Q are labelled

d + 1,d + 2, . . . ,2d. The inequalities in Cx ≤ 1 in P correspond to the pure strategies

of player 2. Since P is the dual cyclic polytope, this means that the 12 facets of P, as po-

sitions in a bitstring in G(6,12), have labels 1,2,3,4,5,6,12,10,11,8,9,7, corresponding

to the interpretation of the second d labels in (3.47) as strategies of player 2. In other

words, the labels 12,10,11,8,9,7 mean that the second set of d inequalities defining the

dual cyclic polytope appear, respectively, as rows 6,4,5,2,3,1 of C, just as in the sym-

metric game. In the same way, Q is the dual cyclic polytope, with its 12 facets labelled

7,8,9,10,11,12,6,4,5,2,3,1. Figure 4 shows the LH path for this game with missing

label 9. It terminates at the pure strategy equilibrium (d,d +1) where player 1 plays his

last strategy (which has label d) and player 2 plays her first strategy (which has label

d +1). It is easily shown that in the game ΓM(d), every LH path terminates either at this

equilibrium or its symmetric counterpart (1,2d), if d is even. If d is odd, every LH path

of ΓM(d) leads to either (2,2d) or (d,d + 2). For any d, every LH path is only two or

three steps long.

P Q
step 1 2 3 4 5 6 12 10 11 8 9 7 7 8 9 10 11 12 6 4 5 2 3 1 step

1 1

v

1 1 1 1 · · · · · ·
1 1 1 1 1

v

1 · · · · · · 〉 1
2 〈

v

1 1 · 1 1 1

v

1 · · · · ·
1 1 1 1 1 · · · · · ·

v

1 〉 3
· 1

v

1 1 1 1 1 · · · · ·

Figure 3.8 An LH path for the symmetric bimatrix game ΓM(6).
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The symmetric equilibria of a symmetric game (C,C⊤) correspond to the arbitrary

equilibria of another, closely related game. This is the imitation game (C, I) (introduced

in McLennan and Tourky (2005)), which is a square game where the payoff matrix to

player 2 is the identity matrix I.

Proposition 3.18 (McLennan and Tourky (2005)) The mixed strategy pair (y,y) is a Nash

equilibrium of the symmetric game (C,C⊤) if and only if there is some strategy x so that

(x,y) is a Nash equilibrium of the imitation game (C, I).

After our construction of the games Γ(d,d), described in Savani and von Stengel

(2004; 2006), McLennan and Tourky (2005) made the ingenious observation that the LH

paths for imitation games (C, I), projected to the polytope Q of player 2, give the paths of

the symmetric LH algorithm.

Proposition 3.19 (McLennan and Tourky (2005)) Let (C,C⊤) be a nondegenerate d×d

symmetric game (C,C⊤). The steps of the symmetric LH algorithm applied to this game

with missing label k, for 1≤ k ≤ d, correspond exactly to the even-numbered steps of the

LH path for the imitation game (C, I) with missing label k, and to the odd-numbered steps

of the LH path for (C, I) with missing label d + k.

Proof: For the imitation game (C, I), the polytope Q in (2.4) is equal to the polytope

S in (2.1). However, the d inequalities y ≥ 0 in Q have labels d + 1, . . . ,2d rather than

1, . . . ,d in S. The polytope P is the d-cube {x ∈ Rd | x≥ 0, x≤ 1}. Hence, any edge of

P drops some label i and picks up label d + i, or vice versa, for some i ∈ {1, . . . ,d}. Any

step of the symmetric LH algorithm is an edge of S, and thereby represents an edge of Q.

It is easy to see that it corresponds to an even- or odd-numbered step of the LH path for

(C, I), as claimed.

Consequently, also noted by McLennan and Tourky (2005), the games (C,C⊤) =

ΓM(d) give rise to exponentially long LH paths for the imitation games (C, I). It fol-

lows from the results by Morris (1994) that the longest such path has length proportional

to (1+
√

2)d/2 ≈ 1.55d , and the shortest path length proportional to (1+
√

2)d/4 ≈ 1.25d .

For our square games Γ(d,d), these numbers are ϕ3d/2 ≈ 2.06d and, by Corollary 3.13,

ϕ3d/4 ≈ 1.43d , respectively. (For imitation games, the polytope P is the d-cube, so no LH
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path can have more than 2d steps.) Thus, the games Γ(d,d) have longer LH paths. More

significantly, however, they can be extended to the non-square games Γ(d,2d) described

in the previous section, which are also hard to solve by support enumeration. In contrast,

the imitation games (C, I) for ΓM(d), which are necessarily square, are easy to solve by

support enumeration. However, based on the ideas of Morris’s construction and imitation

games, in the next section we construct triple imitation games that are hard for both the

LH algorithm and support enumeration.

3.8 The triple imitation games T(d)

The second class of hard-to-solve bimatrix games we construct are 3d×d games, where

only Q is a dual cyclic polytope, this time in dimension d with 4d facets. Like for the

double cyclic polytope games, the facets of Q have labels given by a suitable permutation

of the order of the facets used in a combinatorial description of the vertices of such a

polytope, the Gale evenness condition. We call these games triple imitation games since

the payoff matrix of player 2 has the form of three identity matrices stacked on top of each

other. (If it was a square game with a single identity matrix, it would be an imitation game

(see Section 3.7 and McLennan and Tourky (2005)). The resulting polytope P is a product

of d tetrahedra. As a product of simplices, it is also called a simplotope, a generalization

of a cube.

As for the double cyclic polytope games, all equilibria of the triple imitation games

are such that the player with the smaller number d of pure strategies uses all of them with

positive probability, so the equilibria have full support for that player. In an equilibrium,

both players have equal sized support, so only a d-sized subset of the 3d strategies of

the other player can be that player’s equilibrium support. The games have an exponen-

tial number of equilibria, but they form an exponentially small fraction of all possible

supports, even when restricted to the supports of size d for each player. Consequently,

a random guess of such a support takes exponential expected time. We characterize in

Section 3.8 below the sets of supports that define an equilibrium. By permuting player

1’s 3d strategies randomly, any sequence of support guesses is no better than random.
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(Lemma 3.16 could have been stated more generally; it also applies to this case of hiding

d-sized supports among 3d strategies, with an obvious change to the proof.)

A 3d× d triple imitation game T(d) is defined as follows. The polytope Q is a dual

cyclic polytope with 4d facets in dimension d. The polytope P is given by

P = { x ∈ R3d | x≥ 0, xi + xd+i + x2d+i ≤ 1 for 1≤ i≤ d }. (3.49)

According to (2.4), this means that the payoff matrix B used in the inequalities B⊤x ≤ 1

is given by B⊤ = [ Id Id Id ] with Id as the d×d identity matrix.

The 4d inequalities of P are labelled as in (3.49). The inequalities of Q are those of

P′′ in (3.2) for f = 4d, labelled by the following labelling function l′′. Again, l′′ is its

own inverse, so the l′′(k)th inequality of P′′ is the kth inequality of Q. The first, second,

third, and fourth set of d inequalities get labels pk, qk, rk, and sk, respectively, where for

1≤ k ≤ d,

l′′(k) = pk = k,

l′′(d + k) = qk = 2d +1− k,

l′′(2d + k) = rk = 2d + k,

l′′(3d + k) = sk =


4d k = 1,

4d +1− k− (−1)k, 2≤ k ≤ d−1,

3d +1, k = d.

(3.50)

An example for d = 6 of l′′ is given in the proof of Lemma 3.20 below. Morris (1994)

used a dual cyclic polytope in dimension d with 2d facets, where for 1 ≤ k ≤ d, facets k

and sk−2d both have label k. In our construction, the role of facet k can here be taken by

pk or rk. In this section, we show that each LH path in a triple imitation game corresponds

to one of the “Lemke paths” of Morris (1994).

Similar to Lemma 3.2, the next lemma states that all Nash equilibria in T(d) have full

support for the player with fewer pure strategies. These games have also an exponential

number of equilibria.

Lemma 3.20 The 3d × d triple imitation game T(d) has 3d/2 Nash equilibria, and in

each equilibrium player 2 uses all d strategies with positive probability.
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Proof: According to (3.49), the polytope P is a product of d tetrahedra. Hence, in any

vertex x of P, for each k = 1, . . . ,d, exactly three of the four inequalities xk ≥ 0, xd+k ≥ 0,

x2d+k ≥ 0, and xk+xd+k+x2d+k ≤ 1 are binding, and the other holds as a strict inequality.

Since there are four choices for each k for the non-binding inequality, P has 4d vertices.

In order to get an equilibrium (x,y), the non-binding inequality for x in P determines a

facet of Q that the vertex y must lie on, that is, a 1 in the bitstring v in G(d,4d) that

represents y. Because l′′ in (3.50) is its own inverse, the complementary vertex pairs of

P×Q are therefore given by those v in G(d,4d) where for 1≤ k ≤ d,(
v(pk),v(qk),v(rk),v(sk)

)
∈
{
(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)

}
, (3.51)

that is, exactly one of the four bits v(pk), v(qk), v(rk), v(sk) is 1, and the others are 0, where

v(i) is the ith bit of v, for 1 ≤ i ≤ 4d. To see this, suppose, for example, that v(qk) = 1.

Then the vertex is on the qkth facet of Q, which has label l′′(qk) = l′′(d + d + 1− k) =

2d +1− (d +1− k) = d + k. So this label d + k is present in Q, and by complementarity,

absent in P, so the (d + k)th inequality for x in P is non-binding, that is, xd+k > 0. By

the combinatorial structure of P, therefore xk = x2d+k = 0 and xk + xd+k + x2d+k = 1.

These binding inequalities of P have labels k, 2d + k, and 3d + k, which are the labels

of the pkth, rkth, and skth facet of Q, respectively. By complementarity, this implies

v(pk) = v(rk) = v(sk) = 0.

Suppose that v(sd) = 1. We use (3.51) to show that this gives the artificial equilibrium.

Namely, then v(pd) = v(qd) = v(rd) = 0, and since position rd = 3d of the bitstring is next

to sd = 3d + 1, this requires that v(3d + 2) = v(sd−2) = 1 by Gale evenness. By (3.51),

v(pd−2) = v(qd−2) = v(rd−2) = 0. This is shown for d = 6 in Figure 3.9.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

l′′(i) 1 2 3 4 5 6 12 11 10 9 8 7 13 14 15 16 17 18 24 22 23 20 21 19

(∗) 1 2 3 4 5 6 6 5 4 3 2 1 1 2 3 4 5 6 6 4 5 2 3 1

v(i) 0 0 0 0 0 0 1 1

Figure 3.9 Labels of Q for T(d) with d = 6

Here, the entries of row (∗) show k where l′′(i)∈ { pk,qk,rk,sk }. Because of the “gap”

between each of v(pd) and v(pd−2) etc., Gale evenness implies v(pd−1) = v(qd−1) =

62



v(rd−1) = 0. Thus, v(sd−1) = v(3d+3) = 1 by (3.51). Gale evenness requires v(3d+4) =

1, which leads to the same argument as before. Repeating this shows that v(sk) = 1 for all

k = 1, . . . ,d.

All other complementary vertex pairs give Nash equilibria of the game. If v(sd) = 0,

then exactly one of v(pd), v(qd), or v(rd) is 1 by (3.51). If, say, v(qd) = v(d+1) = 1, then

v(pd) = v(d) = 0, so that by Gale evenness, v(qd−1) = 1. This holds analogously for rd or

pd instead of qd . Hence, (3.51) implies, in particular, that v(sd−1) = 0. In the same way

as for the artificial equilibrium, this implies v(sk) = 0 for all k = 1, . . . ,d, which shows

the full support of the equilibrium. The 1’s in v come in pairs, where v(i) = v(i+1) = 1

for odd i, for any of the three choices pi, q2d+1−i, or ri−2d for i, subject to (3.51). This

gives 3d/2 Nash equilibria.

For T(d), |U(d)|=
(3d

d

)
= Θ((27/4)d/

√
d), using Stirling’s formula. Hence, asymp-

totically |U(d)|− |N(d)| is |U(d)|, and E(d) in (3.41) is exponential for the games T(d),

as it is for the games Γ(d,2d).

Given the description of the equilibria of T(d) in Lemma 3.20, it is not hard to see that

the LH paths for these games correspond to one of the “Lemke paths” of Morris (1994).

We only give a short summary here. Essentially, a dropped label corresponding to one

of the 3d pure strategies of player 1 changes to another vertex of the simplotope P. This

corresponds to one edge traversal in the kth tetrahedron, for some k where 1 ≤ k ≤ d.

Correspondingly, the respective bit v(sk) of the vertex v in the artificial equilibrium is

changed from 1 to 0. (This happens directly when the initially dropped label corresponds

to a strategy of player 2.) The steps in Q, which happen every other time, then mimic

the steps in Morris’s path, except that the cyclic symmetry of the bitstrings in G(d,4d)

that represent Q is used so that throughout the path, either only bits (in positions) pk are

affected, or only bits rk, in addition to the bits sk; the bits qk stay at 0. This mimicking

is analogous to the use of (3.51) above. As a result, the bit pattern in G(d,4d) in the

equilibrium that is found is either 1d03d or 02d1d0d .

The length of the shortest path is Θ((1+
√

2)d/4/
√

d), given as 1.24...d in (??).

Figure 3.10 summarizes the time complexity for the games Γ(d,d), Γ(d,2d), and T(d)

for both support enumeration and the best-case behaviour of the LH algorithm.
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time complexity for expected number expected number length of

challenge instances of guesses among of guesses among shortest

(constants omitted) all supports full supports LH path

Γ(d,d) 2d 1 1.43...d

Γ(d,2d) 2.79...d/
√

d 1.65...d/
√

d 1.43...d

T(d) 5.47...d/
√

d 3.89...d/
√

d 1.24...d

Figure 3.10 Summary of time complexity of support enumeration and the LH algorithm for the

games Γ(d,d), Γ(d,2d), and T(d).

3.9 A pair of labelled dual cyclic polytopes with no com-

pletely labelled vertex pair

Let d be odd. Consider two identical dual cyclic polytopes R and S in dimension d with

2d facets. The vertices of R and S are described by the sets of bitstrings G(d,2d). The

facet labels are defined by permutations l and l′ of 1, . . . ,2d for R and S, respectively. For

a vertex u of R, its labels are given by l(k) where uk = 1. The kth facet of R has label

l(k) = k, so l is simply the identity permutation. A vertex v of S has labels l′(k) where

vk = 1, for 1≤ k ≤ 2d. The kth facet of S has label l′(k). The permutation l′ is defined as

follows:

l′(k) =

k, k = 1,2,2d−1,2d

k− (−1)k, 3≤ k ≤ 2d−2,
(3.52)

Remark 3.21 No vertex of the product polytope R×S is completely labelled.

Proof: Suppose, to the contrary, that there is a completely labelled vertex pair (u,v) ∈

G(d,2d)×G(d,2d). Because d is odd, for any vertex w ∈ G(d,2d), we have w1 = 1,

w2d = 1, or both, by Gale evenness. Suppose u1 = 1, which is without loss of generality

by symmetry. Then, by complementarity, v1 = 0, so in turn v2d = 1 and u2d = 0. We
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depict the situation for d = 5.

R S
label 1 2 3 4 5 6 7 8 9 10 1 2 4 3 6 5 8 7 9 10
(u,v) 1 0 0 1

Suppose u2d−1 = 1. Then u2d−2 = 1, by Gale evenness. So, by complementarity, v2d−3 =

v2d−1 = 0. Then v2d−2 = 0, by Gale evenness. By repeatedly applying complementarity

and Gale evenness in this way, we see that u3 = u4 = · · ·= u2d−2 = 1, which is a contra-

diction, because u has exactly d bits that are 1. So u2d−1 = 0. Similarly, v2 = 0. Thus, we

have the following situation.

R S
label 1 2 3 4 5 6 7 8 9 10 1 2 4 3 6 5 8 7 9 10
(u,v) 1 1 0 0 0 0 1 1

So u3 = 1, by Gale evenness, since d is odd. Then, v4 = 0 by complementarity, and con-

sequently v3 = 0 by Gale evenness. Thus, by complementarity, u4 = 0, and consequently

u5 = 1 by Gale evenness. By repeatedly applying complementarity and Gale evenness in

this way, we see that u1 = u2 = · · · = u2d−2 = 1, which is a contradiction, because u has

exactly d bits that are 1.
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Chapter 4

A Unified View of Complementary

Pivoting Algorithms for Bimatrix

Games

The LH algorithm finds one solution to an LCP (2.2) derived from a bimatrix game. The

closely related algorithm by Lemke (1965), which we describe in Section 4.3, solves more

general LCPs. In Section 4.4, we describe the LCP map and complementary cones view

of LCPs (e.g., Megiddo (1986)). The LCP corresponding to a bimatrix game can, without

loss of generality, be defined by a positive matrix. We show that this implies that the

LCP map is surjective. Then, in Section 4.6, we explain Lemke’s algorithm using this

complementary cones view (e.g., Eaves and Scarf (1976)), which is useful for analyzing

the expected running time of Lemke’s algorithm for LCPs, and the corresponding self-

dual parametric simplex algorithm for LPs (for more details, see Section 5.2).

In Section 4.7, we present a new unified view of the LH algorithm and Lemke’s algo-

rithm via complementary cones; so far such a view was not known. Finally, we extend

Lemke’s algorithm to give more freedom when starting the algorithm. Before we describe

Lemke’s algorithm for general LCPs, in Sections 4.1 and 4.2 we first justify restricting our

attention to finding symmetric equilibria of symmetric bimatrix games with cost matrices,

as this simplifies our exposition of complementary cones.

The new research in this chapter appears in Sections 4.5, 4.7, and 4.8.
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4.1 Finding symmetric equilibria of symmetric games

In this section, we argue that we can focus on finding symmetric equilibria of symmet-

ric bimatrix games, rather than finding Nash equilibria of general bimatrix games. The

symmetrization (2.3) shows that the symmetric problem is no easier than the general one,

and since symmetric equilibria of a game (C,C⊤) are exactly the Nash equilibria of the

imitation game (C, I) (see Section 3.7), the symmetric problem is also no harder than the

general one. Thus, the problem of finding a symmetric equilibrium of a symmetric game

is polynomially equivalent to finding a Nash equilibrium of a general bimatrix game.

The imitation game construction shows that a symmetric game must have at least

one symmetric equilibrium. The symmetric LH algorithm described in Section 2.2 also

shows this, as does a simple modification of Nash’s original proof of the existence of Nash

equilibria in general finite games, which also appears in his seminal paper (Nash (1951)).

It is also worth noting that the standard LH algorithm finds an odd number of equilibria

for a nondegenerate game, as equilibria are all endpoints of paths, with one endpoint

being the artificial equilibrium. Then, since a symmetric game has an even number of

nonsymmetric equilibria (they come in pairs, because the players can be exchanged), it

must have at least one symmetric equilibrium.

4.2 Costs instead of payoffs

As stated at the start of Section 2.2, the symmetric equilibria of a symmetric bimatrix

game (C,C⊤) defined by payoff matrices are the nonzero solutions of an LCP (M,q), with

M =−C and q = 1. Since zero is a solution of this LCP, but is not a Nash equilibrium, it

is sometimes convenient to rewrite the bimatrix game with costs instead of payoffs, with

costs obtained from payoffs by negation. In fact, the original LH algorithm, which we

discuss below, used the cost setup.

In the cost setup, as we did for payoffs, we use normalized payoffs of 1, which only

works if all costs are positive, as we now describe. Given a symmetric n×n game defined

by a cost matrix C for player 1, against a mixed strategy y of player 2 , the expected costs
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for the rows are given by Cy. The best response cost against y is

min
i
(Cy)i . (4.1)

Denote by ek the unit vector with kth component equal to 1 and all others 0.

Lemma 4.1 The best response cost is always positive if and only if C > 0.

Proof: Suppose ci j ≤ 0 for some i and j. Then against y = e j the best response is i with

cost ci j ≤ 0. If C > 0 then Cy > 0, since y≥ 0 and 1y = 1.

If C > 0, then, with y≥ 0 and 1y = 1, mini(Cy)i = v if and only if (Cy)i ≥ v for all i,

and (Cy)i = v for some i. Then, we can divide by v, which is positive by Lemma 4.1, and

preserve the inequalities. This gives (Cy′)i ≥ 1 for all i, and (Cy′)i = 1 for some i, with

y′ = y · 1/v, and y′ ≥ 0 and y′ ̸= 0. The requirement that C > 0 is not restrictive, since a

constant can be added to all entries without changing the equilibria.

So, rather than considering the polyhedron

H = {(y,v) ∈ Rn×R | y≥ 0, 1y = 1, Cy≥ 1v},

we consider the polyhedron

W = {z ∈ Rn | z≥ 0, Cz≥ 1}, (4.2)

which is a projective transformation of the polyhedron

{(y,v) ∈ Rn×R | y≥ 0, 1y = 1, Cy≥ 1v, v > 0}.

This projective transformation has normalised the best response costs to 1. See von Sten-

gel (2002, p. 1735) for details of the corresponding projective transformation for payoffs.

We have used such a normalization for payoffs in Section 2.1; W is the analogue of S

in (2.1). The polyhedron H is not full dimensional, but having eliminated the equation

1y = 1 by the projective transformation, the polyhedron W is full dimensional. The poly-

hedron W is not bounded, unlike S, and is not a polytope; it is like the polytope S “turned

inside out”. Each of the orthant-facets is a facet of W , corresponding to an unplayed pure

strategy. In S, the corresponding facets all intersect at the origin, which is the artificial

equilibrium. With costs, there is no artificial equilibrium, which is exactly the trivial so-

lution of the LCP we have chosen to avoid. Except for this, the facet incidences of W and
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S are the same, which would not be the case if C was not positive, as some orthant-facet

would be “chopped off”. Figure 4.1 gives an example, where

C =

(
2 1

1 3

)
, (4.3)

so the polyhedron is {(z1,z2)
⊤ ∈ R2 | z1 ≥ 0, z2 ≥ 0, 2z1 + z2 ≥ 1, z1 + 3z2 ≥ 1},

and the game has a unique, completely mixed symmetric equilibrium.

1z

2z

1

2

1

2

Figure 4.1 The best response polyhedron for cost matrix C

Equilibria of the symmetric game (C,C⊤) defined by a positive cost matrix C are those

points in W that satisfy the complementarity condition

z⊤(Cz−1) = 0. (4.4)

Thus the symmetric equilibria of (C,C⊤) are the solutions of the LCP (M,q), with M =C

and q =−1.

With the cost setup, the LH path with missing label k comes in along the extreme ray

of W that is part of the coordinate axis for zk (where zi = 0 for all i ̸= k), until it hits

some facet of the polyhedron. As usual, if the label of this facet is the missing label k

we are done, otherwise it is a duplicate label and we continue pivoting, according to the

complementary pivot rule. The path terminates when the label k is picked up, that is,

when either zk or the slack variable wk = 1− (Cz)k leaves the basis.
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4.3 Lemke’s algorithm

In this section, we describe the complementary pivoting algorithm due to Lemke (1965),

which can solve a general LCP (2.2), and not just a bimatrix game. Lemke’s algorithm is

closely related to the LH algorithm. In Section 4.7, we describe a unified view of these

two algorithms (as applied to bimatrix games).

Our exposition in this section, except for Corollary 4.3, which is trivial, and Figure 4.2,

is to a large extent taken verbatim from Koller, Megiddo, and von Stengel (1996), which

in turn refers to Murty (1988, pp. 63–84) and Cottle, Pang and Stone (1992, pp. 270–280

and 336–342).

Given an n-vector q and an n×n matrix M, the LCP is to find two n-vectors z and w

so that
z≥ 0, w≥ 0,

w = q+Mz,

z⊤w = 0,

(4.5)

or to determine that no such vectors exist. The system (4.5) is equivalent to the definition

(2.2) of an LCP given above, with the slack vector w introduced. Lemke’s algorithm

either finds a solution to (4.5) or terminates in a well-defined way, called ray termination,

without a solution. For certain classes of matrices, ray termination implies that the LCP

has no solution. Theorem 4.2, proved below, is such a result for the special vector q and

matrix M in our application; since that LCP has always at least one solution, a solution

will be found by Lemke’s algorithm.

Complementary Pivoting

Because the vectors z and w in (4.5) are nonnegative, the orthogonality condition z⊤w = 0

is equivalent to

ziwi = 0 for i = 1, . . . ,n. (4.6)

Since this means that zi or wi has to be zero, each of these two variables is called the

complement of the other, for 1≤ i≤ n.
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It is useful to generalize the system (4.5) by introducing an n-vector d with positive

components (for example, d = (1, . . . ,1)⊤), called the covering vector, and an auxiliary

variable z0. Let I denote the n× n identity matrix. The generalized problem is that of

finding w≥ 0, z0 ≥ 0, and z≥ 0 so that

Iw−dz0−Mz = q (4.7)

and (4.6) hold. A solution w,z0,z to this problem is called almost complementary. It is a

solution to (4.5) iff z0 = 0.

In (4.7), the vector q is represented as a nonnegative linear combination of certain

columns of the matrix [I,−d,−M]. Like the simplex and LH algorithms, Lemke’s algo-

rithm computes with basic feasible solutions of this system. For the moment, we assume

that these are all nondegenerate, so that the basic variables are always positive; this can

always be achieved by slightly perturbing q; we will come back to the corresponding

lexicographic rules that are applied in the case of degeneracy.

Lemke’s algorithm is very similar to the LH algorithm, using the same complementary

pivoting rule. In the algorithm, almost complementary basic feasible solutions to (4.7) are

iteratively changed by pivoting operations. An initial solution of this kind is easily found.

Let z = 0, which implies (4.6). If z0 is sufficiently large and w = q + dz0, then w is

nonnegative since d > 0, and (4.7) is fulfilled. The set of these almost complementary

solutions is called the primary ray. Let z0 be minimal such that q+dz0 ≥ 0 (and z0 ≥ 0).

If z0 = 0, that is, q ≥ 0, then the LCP (4.5) is solved with w = q, z = 0. Otherwise, z0

is positive, and at least one component wi of the vector w = q+ dz0 is zero. Then the

variables w j for j ̸= i and z0 are basic variables since the corresponding columns of I and

the covering vector d are linearly independent. This yields the first almost complementary

basic feasible solution to (4.7).

For the central step of the algorithm, consider any almost complementary basic feasi-

ble solution where z0 is basic. The n basic variables are positive by nondegeneracy, and

include at most one variable of each complementary pair by (4.6). Thus, there is pre-

cisely one such pair zi,wi where both variables are nonbasic and have value zero (this is

the duplicate label that we know from the LH algorithm). If either variable is increased

while maintaining the linear relationship (4.7), this will still be an almost complementary

solution as long as the variables stay nonnegative. For the initial solution, increasing wi
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results in the primary ray. Therefore, the complement zi of wi is increased until some

other basic variable x j becomes zero. This is implemented as a pivot with zi as entering

and x j as leaving variable. If the leaving variable x j is z0, a solution to the original LCP is

at hand. Otherwise, there is again a pair z j,w j of complementary variables that are both

nonbasic. One of them is the variable x j that has just left the basis. Again, its complement

is chosen as the new entering variable, and the process is repeated.

Lemke’s algorithm has a geometric view. The set of all nonnegative solutions to (4.7)

is a polyhedron where the basic feasible solutions are the vertices. For this system, the

almost complementary solutions are certain edges of the polyhedron. The algorithm traces

a unique almost complementary path consisting of such edges. The path starts with the

primary ray, whose endpoint corresponds to the first basis. A move from vertex to vertex

along an edge represents a pivoting operation, which is uniquely determined by the pair

of complementary variables that are both nonbasic at the respective vertex, and by the

direction on the path.

The leaving variable is decided according to the complementary pivoting rule. For the

simplex algorithm for linear programming a different rule, based on improving the objec-

tive function, is used to determine the leaving variable. In both cases, and for pivoting in

general, the entering variable is chosen so as to preserve feasibility, This is done using the

so-called minimum ratio test, which we now describe briefly.

Entering and Leaving Variables

We want to pivot from one basic solution of the system of linear equations Ax = b, to

another. Consider a basic feasible solution with basis B, and let N denote the index set of

the nonbasic columns. The following equations are equivalent for any x:

Ax = b,

ABxB +ANxN = b,

xB = A−1
B b−A−1

B ANxN . (4.8)

Equation (4.8), called a “dictionary” by Chvátal (1983, p. 98), expresses the basic vari-

ables xB in terms of the nonbasic variables xN , in particular for the basic feasible solution

with xN = 0. Assume that all components of xN are kept zero except xi. We denote the
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entering column A−1
B Ai by e, and the right hand side A−1

B b by r. Then, (4.8) has the form

xB = r− exi . (4.9)

For xi = 0, (4.9) represents the current basic feasible solution xB = r. How long does xB

stay nonnegative if xi is gradually increased? If e has no positive components, then xi

can be made arbitrarily large (for the simplex algorithm this would signify an unbounded

LP, for Lemke’s algorithm this is ray termination). Otherwise, some components e j of e

are positive. These impose an upper bound on the choice of xi in (4.9) so that xB stays

nonnegative, by the following minimum ratio test:

xi = min{r j/e j | e j > 0} . (4.10)

The components of the vector r−exi, like the rows of A−1
B , are indexed with the elements

j of B. With xi determined by (4.10), at least one of these components is zero, and the

corresponding variable x j is made the leaving variable and becomes nonbasic. We obtain

a new feasible solution where the entering variable xi is set as in (4.10), and the remaining

basic variables in xB (except x j) are changed according to (4.9).

The system Ax = b is here (4.7), with A = [I,−d,−M] and x = (w,z0,z)⊤. The basic

variables x j for j ∈ B are given by z0 and one variable of each complementary pair z j,w j

except one, that is, for 1≤ j≤ n, j ̸= i. The entering variable xi is either zi or wi depending

on which of these two variables has just left the basis. In (4.9), there is a maximum choice

of xi such that r−exi≥ 0 provided the entering column e has positive components. It may

indeed happen that e ≤ 0, and in that case xi can be increased indefinitely; the resulting

almost complementary solutions constitute what is called the secondary ray. In that case,

Lemke’s algorithm stops without a solution to the LCP (4.5), just as the simplex algorithm

terminates when processing an unbounded LP. This is called ray termination of Lemke’s

algorithm. As mentioned, it can be excluded for certain q and M; we will describe a

special case below.

If the entering column e in (4.9) has a positive component, then the minimum ratio

test (4.10) determines the value of the entering variable xi and a unique leaving variable

because after pivoting, the new basis is nondegenerate. In that way, the algorithm gener-

ates a sequence of almost complementary basic feasible solutions that each have a unique

predecessor and successor (joined by the edges of the almost complementary path). Thus,
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a basis cannot be repeated. If Lemke’s algorithm does not terminate with a secondary ray,

it will therefore find a solution to the LCP (4.5), since eventually z0 must leave the basis.

In summary, Lemke’s algorithm consists of the following steps. We refer to the system

(4.7) as Ax = b as described, and identify a basis B of that system by its set of basic

variables, a subset of {w1, . . . ,wn,z0,z1, . . . ,zn}. All nonbasic variables have value zero.

We determine the first almost complementary basic feasible solution using a pivot where

z0 enters and wi leaves the basis, starting with an infeasible basic solution where w = b,

z0 = 0, and z = 0.

0. (Initialization.) Input q,d,M. Let the basic variables be w1, . . . ,wn, with w= b= q and

z0 = 0, z = 0. If b≥ 0, then stop: this is a solution to (4.5)1. Otherwise, consider the

index i such that −bi/di is maximal, where bi < 0; that index is unique by nondegen-

eracy. Pivot with wi leaving and z0 (at value −bi/di) entering the basis. The resulting

basic solution is feasible and almost complementary. Choose the complement zi of wi

as the new entering variable.

1. If the entering column e in (4.9) is nonpositive, then stop: ray termination, no solution

to (4.5) has been found. Otherwise, the minimum ratio test (4.10) determines the

leaving variable, which is unique by nondegeneracy.

2. Pivot. If the leaving variable has been z0, then stop: a solution to (4.5) is found.

Otherwise, choose the complement of the most recent leaving variable as the new

entering variable. Go back to Step 1.

Degeneracy Resolution

The almost complementary path computed by Lemke’s algorithm is unique only if the

leaving variable in Step 1 is unique. If this is not the case, then the system (4.7) has

degenerate basic feasible solutions, and Lemke’s algorithm may cycle unless the leaving

variable is chosen in a systematic way.

In Lemke’s algorithm, degeneracy can be resolved by the lexicographic method. Intu-

itively, the vector q is slightly perturbed by replacing it by q(ε) = q+(ε, . . . ,εn)⊤, where

1We omit this check for solving bimatrix games: with a cost setup b = q = (−1, . . . ,−1)⊤ ≤ 0 and the

check is irrelevant.
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ε is positive but vanishingly small. The minimum ratio test (4.10) is replaced by the

lexico-minimum ratio test, which determines the leaving variable uniquely. It preserves

the invariant that all computed basic solutions are lexico-feasible. Equivalently, all ba-

sic variables in the perturbed system are positive; since that system is nondegenerate,

the computed almost complementary path will again be unique. For details see Chvátal

(1983), for example.

The invariant must be established for the first almost complementary basic feasible

solution computed in Step 0, given by w = q+ dz0. This solution may be degenerate if

there is a tie among the maximal ratios −qi/di for qi < 0. If (4.7) is perturbed, replacing

q by q(ε), then these ratios are −qi/di− εi/qi, so that the maximum is attained uniquely

for the largest index i among those ties. This rule has to be applied in Step 0 (it is not

correct to break ties arbitrarily as suggested by Murty (1988, p. 80)). In that way, the

first almost complementary basic solution is lexico-feasible, and using subsequently the

lexico-minimum ratio test, Lemke’s algorithm will terminate after a finite number of steps.

Excluding Ray Termination

We want to use Lemke’s algorithm for computing an equilibrium of a bimatrix game. For

that, it is important to exclude ray termination. Theorem 4.2, which excludes ray termi-

nation under certain conditions, and its application to finding a Nash equilibrium of an

extensive game (game tree), appeared in Koller, Megiddo and von Stengel (1994; 1996).

The theorem is based on Theorem 4.4.13 of Cottle, Pang and Stone (1992, p. 277); as

mentioned by these authors (p. 377), the theorem is partly implicit in the works by Lemke

(1965) and Cottle and Dantzig (1968), as we will indicate. We restate and prove this the-

orem here, for the general case where degeneracy is allowed. It is assumed that Lemke’s

algorithm uses a positive covering vector d and operates with lexicographic degeneracy

resolution as described above. For a more general study of excluding ray termination see

Eaves (1971).

Theorem 4.2 If (i) z⊤Mz ≥ 0 for all z ≥ 0, and (ii) z ≥ 0, Mz ≥ 0 and z⊤Mz = 0 imply

z⊤q ≥ 0, then Lemke’s algorithm computes a solution of the LCP (4.5) and does not

terminate with a secondary ray.
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Proof: Let M and q fulfill (i) and (ii), and assume to the contrary that Lemke’s algo-

rithm terminates with a secondary ray. The endpoint of this ray shall be denoted by

x = (w,z0,z)⊤. This is a basic feasible solution of (4.7), where the vector xB of basic

variables includes z0 since it would otherwise solve the LCP (4.5). We assume first that

this solution is nondegenerate, that is, all components of xB, in particular z0, are positive.

Ray termination implies that the entering column e in equation (4.9) is nonpositive.

The elements of the secondary ray result if xi in that equation takes any nonnegative

value. These elements shall be written as x+λx̃ for λ ≥ 0. The vector x̃ = (w̃, z̃0, z̃)⊤ is

nonnegative; its components are the components of −e, a one for its ith component (with

λ = xi), and zero otherwise. In particular, x̃ ̸= 0.

The elements x+λx̃ of the secondary ray are solutions to (4.7), that is,

w+λw̃ = q + d(z0 +λz̃0) + M(z+λz̃) (4.11)

for all λ≥ 0, and these solutions are almost complementary,

(z+λz̃)⊤(w+λw̃) = 0 . (4.12)

Equation (4.11) with λ = 0 and λ = 1 implies

w̃ = dz̃0 +Mz̃ . (4.13)

This implies z̃ ̸= 0: otherwise, z̃0 > 0 since x̃ ̸= 0 and thus w̃ ̸= 0 in (4.13), which implies

w+λw̃ > 0 because d > 0, so that by (4.12), z = 0, which means that the secondary ray

is the primary ray, contradicting the fact that we have a path.

Equation (4.12) and x̃≥ 0 imply z̃⊤w̃ = 0, and thus by (4.13),

0 = z̃⊤w̃ = z̃⊤dz̃0 + z̃⊤Mz̃ .

This equation has been stated by Lemke (1965, p. 687, equation (20) with z̃0 = u0, z̃ = u),

and by Cottle and Dantzig (1968, p. 116, equation (37)). It implies z̃0 = 0 since z̃ is non-

negative and nonzero and d > 0, and since the last term is nonnegative by assumption (i).

Thus, z̃⊤Mz̃ = 0, and by (4.13), w̃ = Mz̃≥ 0. Assumption (ii) implies z̃⊤q≥ 0. We derive
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a contradiction to this conclusion as follows, using (4.12), (4.11), and (i):

0 = (z+λz̃)⊤(w+λw̃)

= (z+λz̃)⊤(q+dz0 +M(z+λz̃))

≥ (z+λz̃)⊤(q+dz0)

= z⊤(q+dz0)+λz̃⊤(q+dz0).

The last term is nonpositive for all λ≥ 0 only if z̃⊤(q+dz0)≤ 0, or equivalently, z̃⊤q≤

−z̃⊤(dz0)< 0, contradicting (ii).

We have shown that (i) and (ii) exclude ray termination unless (4.7) has a degenerate

solution where z0 is a basic variable but has value zero. This does not pose any problem

since if there is a tie in Step 1 of the algorithm, one could first check if z0 can leave

the basis even before invoking the lexicographic rule, which then yields a solution of the

LCP. However, we show that this additional check, although it might possibly shorten the

computation, is not necessary.

That is, assume that there is a secondary ray with endpoint x = (w,z0,z)⊤ as above

where z0 is basic, but now has value zero. Because this basic feasible solution has

been computed using lexicographic degeneracy resolution, there is a perturbation of (4.7)

where q is replaced by q(ε) = q+(ε, . . . ,εn)⊤ for some small positive ε, where the same

basis defines a (perturbed) solution x that is nondegenerate so that z0 is positive. For the

perturbed system, there is still a secondary ray since the nonpositive entering column e

in (4.9) does not depend on q. With the same argument as before, we can now conclude

z̃⊤b(ε) < 0, which is again a contradiction to (ii) since z̃⊤q(ε) = z̃⊤q+ z̃⊤(ε, . . . ,εn)⊤ >

z̃⊤q. This shows that the theorem holds even if Lemke’s algorithm encounters degenerate

solutions, provided it uses the lexicographic method.

Corollary 4.3 Lemke’s algorithm (with d > 0) will always find a Nash equilibrium of a

bimatrix game.

Proof: We can assume w.l.o.g. that M > 0, in which case the conditions of Theorem 4.2

are trivially satisfied.
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We end this section with Figure 4.2, an illustration of using Lemke’s algorithm with

covering vector d = (2,1)⊤ to find a symmetric equilibrium of the 2×2 symmetric game

with C as in (4.3) (so Figure 4.2 corresponds to Figure 4.1).

0z

1z

2z

0z = 0

1

2

1

2

Figure 4.2 An illustration of Lemke’s algorithm

4.4 The LCP map and complementary cones

In this section, we describe the LCP map and the complementary cones view of LCPs

and complementary pivot methods (e.g., Eaves and Scarf (1976)). A linear program is a

special case of an LCP (e.g., Smale (1983)), and Lemke’s algorithm applied to a linear

program corresponds to a variant of the simplex algorithm called the self-dual parametric

simplex algorithm (Dantzig (1963, p. 245)). The complementary cones view is particu-

larly useful for the probabilistic analysis of Lemke’s algorithm (Megiddo (1986)), and the

self-dual parametric simplex algorithm (Smale (1983), Adler and Megiddo (1985)).

We begin with some definitions. First, the definition of a cone, which is the usual,

well-known operator. It is applied to a set of vectors, X = {x1, . . . ,xN}⊆Rn, and produces

the set of all positive combinations of these vectors,

cone(X) = {
N

∑
i=1

λixi | λ ∈ RN ,λ≥ 0}. (4.14)
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Let α ⊆ {1, . . . ,n}. Next, we define the usual orthants of Rn, where α denotes the set of

positive unit vectors of the basis of the orthant. The α–orthant of Rn is

cone({ei,−e j | i ∈ α, j /∈ α}). (4.15)

It is relevant because the LCP map, introduced below, maps orthants to complementary

cones, which we define next. Given an n×n matrix M, denote by Mi the ith column of M.

The complementary cone C(α) is

cone({Mi,−e j | i ∈ α, j /∈ α}). (4.16)

Nonnegative n-vectors z and w are a solution to the LCP (4.5) if and only if they satisfy

the complementarity condition (4.6), and

−q = Mz−w . (4.17)

With α = {i | zi > 0}, this is equivalent to −q belonging to a complementary cone, i.e.,

−q ∈C(α) = cone({Mi,−e j | i ∈ α, j /∈ α}). (4.18)

See Figure 4.3 for an illustration. Let x+ = max{xi,0} and x− = min{xi,0}. The LCP

map, F : Rn→ Rn, is defined by

F(x) = Mx++ x−. (4.19)

The LCP map F , which is piecewise linear, maps orthants to complementary cones,

that is, F(α–orthant) =C(α), and F is the identity map on the negative orthant (α = /0).

4.5 Surjective LCP map for M > 0

In this section, we show that if M > 0 then the LCP map F is surjective.

Lemma 4.4 For M > 0, F is surjective, that is, given p ∈Rn there exists x ∈Rn such that

F(x) = Mx++ x− = p .

Proof: Let p ∈ Rn be given. We find an x such that F(x) = p in two stages. First, we find

the positive components of x. Let α = {i | pi > 0}. Consider the following LCP, which
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uses only the rows i ∈ α,

∀i ∈ α, xi ≥ 0, ∑
j∈α

(mi j/pi)x j ≥ 1, xi(∑
j∈α

(mi j/pi)x j−1) = 0 . (4.20)

This LCP has M > 0 and q = −1. Therefore, the solutions of (4.20) are the symmet-

ric Nash equilibria of the |α| × |α| symmetric game with cost matrix for player 1 equal

to (mi j/pi) for i, j ∈ α. Since every symmetric game has at least one symmetric Nash

equilibrium (see Section 4.1), at least one solution, say x∗ ∈ Rα, to (4.20) exists. Let

β = {i | x∗i > 0}. If i ∈ β, we have (∑ j∈α(mi j/pi)x j = 1 by complementarity. We set

xi = x∗i > 0 for i ∈ β, giving the positive components of x.

Second, we choose for all k /∈ β the nonpositive components of x. By definition, we

have pk ≤ 0 for k /∈ α. Since M is positive and x j > 0 for i ∈ β, we have ∑ j∈β mk jx j > 0

for all k, in particular k /∈ β. By complementarity in (4.20), we have ∑ j∈β mk j ≥ pk for

i ∈ α\β. So, for k /∈ β, we can set xk ≤ 0 such that

∑
j∈β

mk jx j + xk = pk .

Thus, we have F(x) = p.

A matrix M is called a P-matrix if all its principal minors are positive, i.e. det(Mαα)>

0 for all α ⊆ {1, . . . ,n}. Equivalently, M is a P-matrix if for any q the LCP (M,q) has a

unique solution. This is the case if and only if the LCP map is bijective; see e.g., Cottle,

Pang, and Stone (1992). As an example, the matrix M = C in (4.3) is a P-matrix, since

det(M1,1) = 2 > 0, det(M2,2) = 3 > 0, and det(M12,12) = det(M) = 5 > 0, and Figure 4.3

shows the corresponding bijective LCP map.

4.6 Lemke’s algorithm and complementary cones

In this section, we describe how Lemke’s algorithm can be viewed in terms of comple-

mentary cones and the LCP map (see Megiddo (1986) or Eaves and Scarf (1976)).

The algorithm with covering vector d, can be seen as inverting the piecewise linear

map F(x) along the line segment [−d,−q]:

F(x) = Mx++ x− = (−d)(1− t)+(−q)(t) (0≤ t ≤ 1) (4.21)
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Figure 4.3 A bijective LCP map F with a P-matrix M. With q = (1,1)⊤, the unique solution of

the LCP has support {z1,z2}, since −q is contained uniquely in the complementary

cone spanned by columns M1 and M2. If we exchange the columns of M it is no

longer a P-matrix, the LCP map is not injective, and the LCP has three solutions,

with supports {z1} ,{z2}, and {z1,z2}, corresponding to the complementary cones

spanned by M1 and −e2, −e1 and M2, and M1 and M2, respectively.

Figure 4.4 gives an illustration. At each basic solution in the standard view of the algo-

rithm, the basic variables correspond to a nonzero components of x in (4.21), where there

are exactly n− 1 such variables excluding z0, so we are on at some point on a facet of

a complementary cone. Each pivot in the standard view of the algorithm corresponds to

crossing one of the complementary cones from one facet to another. Since the LCP map is

not necessarily bijective, we must specify which complementary cone is crossed next, if

there is more that one cone on the other side of the current cone-facet (this clarifies what

is meant by “inverting” the map F along [−d,−q]). In each pivoting step, one variable

enters the basis and one variable leaves. It is the entering variable that determines which

complementary cone is crossed next. As in the standard view of Lemke’s algorithm, the

entering variable is determined by the complementary pivot rule: The duplicate label (the

complement of the label that was just picked up) enters the basis.

Even if the LCP map is surjective the algorithm may terminate with a secondary ray,

rather than a solution to the LCP; see Section 4.8 for an example.
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We now show the correspondence between (4.21) and w≥ 0, z≥ 0, z0 ≥ 0, (4.6), and

(4.7). We divide (4.21) by t, the parameter of the convex combination of −d and −q,

which only works for positive t.

for t > 0 : Mx+(1/t)+ x−(1/t) = (−d)(1− t)/t +(−q)

Mz−w = (−d)z0 +(−q), z≥ 0,w≥ 0, and (4.6) holds.

Thus, the change of variables z = x+/t, w = −x−/t, and z0 = (1− t)/t shows the cor-

respondence. So, 0 < t ≤ 1 corresponds to ∞ > z0 ≥ 0.

= 1
1q

M2

e2

e1

M1

1
3

2
1

d = −2
−1

Figure 4.4 Lemke’s algorithm as inverting the piecewise linear LCP map F along the line seg-

ment [−d,−q]. The computation involves four basic solutions, corresponding to the

endpoints −d and −q, and the facets of the complementary cones that the line seg-

ment crosses. Thus, the computation involves three pivoting steps.

Lemke’s algorithm succeeds only if

F−1[(1− t)(−d)+ t(−q)] ̸= /0 for every t ∈ [0,1] . (4.22)

Furthermore, viewed in terms of complementary cones, it is clear that when the LCP map

is surjective (so (4.22) is satisfied) ray termination can only occur if −d is contained in

more than one complementary cone. Ray termination is related to the non-monotonicity

of t, or equivalently of z0 = (1− t)/t. When the LCP map is not bijective, the preimage

of part of the line segment [−d,−q] may be “reflected back”, so t decreases, into a cone

(overlapping the previous cone) in an unbounded direction. As shown by Theorem 4.2,

this is not possible for bimatrix games when starting in the negative orthant, i.e. d >
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0 (because the preimage of the negative orthant under F is unique). For M > 0, ray

termination is not possible in dimension 2, but an example in dimension 3 is given at the

end of Section 4.8.

In Section 4.8, we describe a simple extension of Lemke’s algorithm: Rather than

requiring d > 0, and thus starting in the negative orthant (with α = /0 in (4.16)), we can

start in other complementary cones. In that case the algorithm may fail, even for bima-

trix games, when more than one complementary cone contains −d. For a general LCP,

Lemke’s algorithm may fail even if d > 0, but starting in other cones may allow one to

find a solution. Of course, if there is at least one solution, one may be lucky and decide

to start in one of the complementary cones containing −q; in this case, the extension is

equivalent to guessing the support of a solution, solving a small system of linear equations

by pivoting, and checking for feasibility.

4.7 A unified view of Lemke’s algorithm and the Lemke–

Howson algorithm

In this section, we give a unified view of the LH algorithm and Lemke’s algorithm. The

standard initialization of Lemke’s algorithm requires that d > 0, and traditionally the

covering vector d = 1 is used. We show that the LH algorithm, with missing label k,

corresponds to Lemke’s algorithm with a covering vector d = −ek. Since this covering

vector is not positive, the first issue we must deal with is initialization: We initialize by

pivoting z0 into the basis and wk out. After this pivot, the basic solution is still infeasible.

According to the complementary pivot rule, we pivot zk in (Mk is positive), and we start

in the cone C({k}).

Lemma 4.5 Lemke’s algorithm with a covering vector d = −ek, initialized in this way,

corresponds to the Lemke–Howson (LH) algorithm, with missing label k.

Proof: The variable z0, which does not feature in the standard LH algorithm, is only

involved in the first and last pivots of Lemke’s algorithm with d = −ek. In the last pivot

z0 finally leaves the basis to give an equilibrium. There are two cases to distinguish:

(i) zk > 0 in the equilibrium at the end of the LH path. Then, in the final pivot the entering
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variable is identical to the entering variable of the final pivot in the standard LH algorithm.

In this case, Lemke’s algorithm with d =−ek takes one more pivot than the standard LH

algorithm.

(ii) zk = 0 in the equilibrium at the end of the LH path. Then the penultimate pivot is

identical to the final pivot of the standard LH algorithm, and in the final pivot the entering

variable is wk. So in this case, Lemke’s algorithm with d = −ek takes two more pivots

than the standard LH algorithm.

We illustrate these two cases with the symmetric LH algorithm applied to the follow-

ing 3×3 symmetric game (C,C⊤), defined by the cost matrix

C =


4 1 2

1 4 2

2 2 1

 .

It has a unique pure strategy symmetric equilibrium, where player 1 plays the third row

(z1 = 0, z2 = 0, and z3 > 0). Thus, applying the symmetric LH algorithm with z0 will

require one extra pivot with missing label 3, but two extra pivots with missing labels 1

or 2. This is shown in Figure 4.5 for missing label 3, and in Figure 4.6 for missing label 2.

LH no z0 LH with z0

Pivot Pivot
In Out In Out

z0 w3

z3 w3 z3 z0

Figure 4.5 Pivots for the symmetric LH algorithm with missing label 3, with and without z0.

LH no z0 LH with z0

Pivot Pivot
In Out In Out

z0 w2

z2 w1 z2 w1

z1 w3 z1 w3

z3 z1 z3 z1

w1 z2 w1 z2

w2 z0

Figure 4.6 Pivots for the symmetric LH algorithm with missing label 2, with and without z0.
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4.8 Starting Lemke’s algorithm in arbitrary cones

The standard version of Lemke’s algorithm uses a positive covering vector d, and inverts

the piecewise linear map F along the line segment [−d,−q]. In the previous section we

showed that, when taking d =−ek ≤ 0, which corresponds to starting in the cone C({k}),

Lemke’s algorithm corresponds to the LH algorithm with missing label k. In fact, we

can start the algorithm in any cone, as we describe in this section. However, unlike when

d > 0 or d = −ek, we are not guaranteed to avoid ray termination for M > 0. Despite

this potential problem, extending Lemke’s algorithm in this way may be useful. Indeed,

when Lemke’s algorithm is run on a general LCP, there is no way to guarantee avoiding

ray termination.

We can try any d, provided we know x̄ with F(x̄) = −d. So, for example, as we

will do, we can choose d in an arbitrary cone and let d = −F(x̄). Instead of specifying

a covering vector, we specify an x̄ ∈ Rn. In fact, the covering vector d is not explicitly

used in this extended version of the algorithm, only x̄. In the standard version of Lemke’s

algorithm we do use d, but this is because d is positive, so F−1(−d) =−d = x̄.

Here is the modified initialization of Lemke’s algorithm. Steps 1 and 2 are the same

as the standard Lemke’s algorithm on page 74. As usual, α = {i | xi > 0} ⊆ {1, . . . ,n}.

0. (Initialization.) Input q, x̄,M. Let the basic variables be w1, . . . ,wn, with w = b and

z = 0. At this point z0 is not in the system. Pivot the variables {zi | i ∈ α} into

the basis, in any order, with the respective complement as the leaving variable. If

b ≥ 0, then stop: this is a solution to (4.5). Otherwise, augment the system with

the nonbasic variable z0, with coefficients |x̄|. Then, consider the index i such that

−bi/di is maximal, where bi < 0; that index is unique by nondegeneracy. Pivot with

wi leaving and z0 (at value −bi/di) entering the basis. The resulting basic solution

is feasible and almost complementary. Choose the complement zi of wi as the new

entering variable.

Define the matrix B as follows.

Bi =

Mi, i ∈ α,

−ei, otherwise.
(4.23)
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We could have included z0 in the system from the beginning (with coefficients d),

but this would be a little wasteful, since the coefficients of z0 after the first |α| pivots are

just the |x̄i|’s by construction: The pivoting operations that bring the variables {zi | i ∈ α}

into the basis are equivalent to multiplying the original system (4.7) by the inverse of the

matrix B in (4.23). So

B−1d = |x̄|. (4.24)

This modification of Lemke’s algorithm first tests if there is an equilibrium corre-

sponding to the support α defined by x̄. If there is one, the algorithm terminates after the

initialization step. This is done in essentially the same way as a support enumeration algo-

rithm, by solving the small system of linear equations and then testing for feasibility. So,

this extension of Lemke’s algorithm can easily be combined with support enumeration.

We end this section with a 3×3 example of ray termination for M > 0.

Input : q = (−1,−1,−1)⊤, x̄ = (−1,1,1)⊤, M =


4 1 3

1 3 2

2 2 1

 . (4.25)

We start at the infeasible solution z = 0, w = q, which as a dictionary is

w1 =−1+4z1 + z2 +3z3 ,

w2 =−1+ z1 +3z2 +2z3 ,

w3 =−1+2z1 +2z2 + z3 .

(4.26)

Pivoting in z2 and then z3 gives the dictionary

w1 =−3+13z1 +5w2−7w3 ,

z2 =−1− 3z1− w2 +2w3 ,

z3 =−1+ 4z1 +2w2− 3w3 .

(4.27)

If w and z were nonnegative we would have an equilibrium, and be done. This is not the

case, so we augment the system with the nonbasic variable z0, which has coefficients |x̄|.

As mentioned previously, we could have included z0 in the system from the beginning, but

this would be a little wasteful, since the coefficients of z0 are just the x̄i’s by construction.

The two pivoting operations that put the variables z2 and z3 into the basis are equivalent
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to multiplying the original system (4.26) by the inverse of [−e1 M2 M3], which is
−1 1 3

0 3 2

0 2 1


−1

=


−1 5 −7

0 −1 2

0 2 −3

 ,

and [−e1 M2 M3]
−1d = |x̄| by (4.24). The augmented dictionary is

w1 =−3+13z1 +5w2−7w3 +1z0 ,

z2 =−1− 3z1− w2 +2w3 +1z0 ,

z3 =−1+ 4z1 + 2w213w3 + 1z0 .

Next we bring z0 into the basis and start complementary pivoting. So z0 enters the basis

and w1 leaves. Then z1 enters the basis and z3 leaves, which gives the dictionary

9z0 =−1+ −4w1−6w2 +11w3 +13z3 ,

9z1 =−2+ −7w1−6w2 + 4w3− z3 ,

9z2 =−4+ 1w1−3w2 +17w3 + 16z3 .

Next we try to bring w3 into the basis, but because all coefficients of w3 are positive, there

is no restriction on feasibility as w3 is increased, and w3 and thus z0 can become arbitrarily

large. So, the algorithm terminates with a secondary ray.

In summary, we may start Lemke’s algorithm in any complementary cone, as de-

scribed above. When M > 0, which includes the case of bimatrix games, we are guar-

anteed to terminate with a solution if d > 0. Starting in other complementary cones, we

may get ray termination, as the previous example shows, but this extension of Lemke’s

algorithm may still be useful (also for more general LCPs).
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Chapter 5

Conclusions and Open Questions

5.1 Recent results on PPAD-completeness

In complexity theory, function problems are those that, as well as requiring a “yes/no”

answer to a decision problem, require also a solution to accompany a “yes” answer. The

class FNP of function problems in NP are those where a solution is verifiable in polyno-

mial time. If the decision problem is known to have a “yes” answer for any valid input,

the problem is said to be total. NASH belongs to the complexity class TFNP of total func-

tion problems in NP (Papadimitriou (1994a, p. 229)): For the two-player case, with the

bimatrix game as input, the required output are the mixed strategy probabilities, where

the equilibrium property is verified in polynomial time. The class TFNP does not have

complete problems unless NP = co-NP (Megiddo and Papadimitriou (1991)).

Subclasses of TFNP are characterzied by the “proof technique” used to show totality

of the problem. For the subclass of TFNP called PPAD, the problems are known to have

a solution by a polynomial parity argument for directed graphs (Papadimitriou (1994b,

p. 516)). The parity argument states that a directed graph (defined implicitly), where the

indegree and outdegree of every node is at most one, consists of cycles and directed paths,

so that there are as many starting points as endpoints of these paths. Formally, PPAD is

defined as those problems in TFNP that are reducible to the following problem:
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END OF THE LINE:

Given two boolean circuits S and P, each with n input bits and n output bits, such that

P(0n)= 0n ̸= S(0n), find an input x∈{0,1}n such that P(S(x) ̸= x or S(P(x)) ̸= x ̸= 0n.

Intuitively, END OF THE LINE creates an exponential-size directed graph with vertex set

{0,1}n and an edge from x to y whenever both y = S(x) and x = P(y) (S and P stand

for successor and predecessor, respectively). All nodes in this graph have indegree and

outdegree at most one, and there is at least one source, namely 0n, so according to the

parity argument there must be a sink. We seek either a sink, or a source other than 0n.

An instance of a problem in PPAD is specified by a polynomial-time algorithm for

finding at least one starting point, and for finding the neighbour of a point in the graph

or else declaring it as an endpoint. The possible endpoints (of which at least one exists)

are the allowed function values. NASH belongs to PPAD, since using the LH algorithm

it is easily reduced to END OF THE LINE. The LH algorithm uses a trivial artificial

equilibrium as the starting point, has a freely chosen starting edge as a parameter, and then

uses a unique “complementary” pivoting rule for determining the next “basic solution”

(successor). It thereby traces the vertices of a certain polytope and ends at an equilibrium.

The edges of the graph are directed (so the direction of the path can be determined even

without knowing the past history) by a geometric orientation (Shapley (1974), see von

Schemde (2005) for a recent discussion); see also Figure 2.1 above.

The parity argument may be inefficient if the paths are not of polynomial length. We

have shown explicitly that this inefficiency may occur for NASH, by giving games that

produce exponentially long LH paths.

For more than two players, a game may have only equilibria with irrational solutions

(Nash (1951)). N-NASH, which is the problem of finding an approximate Nash equilib-

rium of an N-player game, also belongs to PPAD, shown by a reduction to END OF THE

LINE via Brouwer’s Theorem and Sperner’s Lemma. Recently, there have been several

important contributions towards understanding the computational complexity of N-NASH

and NASH, in a series of preprints, which we now describe.

The paper by Papadimitriou and Goldberg (2005) shows how to reduce N-NASH to 4-

NASH. In the paper by Daskalakis, Goldberg, and Papadimitriou (2005), it is shown that

4-NASH is PPAD-complete, which implies that any other problem in the complexity class
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PPAD, which includes most other problems related to equilibrium computation (Papadim-

itriou (1994b)), can be reduced to 4-NASH. Then, Chen and Deng (2005a), and indepen-

dently Daskalakis and Papadimitriou (2005), showed that 3-NASH is PPAD-complete, and

very recently, Chen and Deng (2005b) showed that 2-NASH is also PPAD-complete. This

would mean that a two-player game represents already the full complexity of the Nash

equilibrium problem (with respect to polynomial-time algorithms). This result makes it

unlikely that a polynomial-time algorithm for 2-NASH (and therefore NASH) exists, since

such an algorithm would give a polynomial-time algorithm, for example, for computing

Brouwer fixpoints. For large classes of algorithms that compute Brouwer fixed points

of a given function (namely “black box” algorithms that merely evaluate the function,

rather than using its description), Hirsch, Papadimitriou, and Vavasis (1989) have shown

exponential lower bounds.

5.2 Open questions

A linear program (LP) can be formulated as an LCP, which captures the complementary

slackness conditions that characterize a pair of optimal solutions to the primal and dual

LP. Applied to such an LCP, Lemke’s algorithm corresponds to the self-dual parametric

simplex algorithm for solving LPs (Dantzig (1963, p. 245)). A special case of this is a

parametric simplex algorithm where the right-hand side is parameterized, which Murty

(1980) has shown to be exponential. Another special case is the parametric-objective

simplex algorithm, which Goldfarb (1983; 1994) has shown to be exponential.

For linear programming, despite the worst-case exponential behaviour of all known

pivoting algorithms, they tend to work well in practice; this is also backed up by theo-

retical results (Spielman and Teng (2004)). For various models of random input data, the

expected running time of the simplex algorithm is polynomial, in contrast to the worst-

case exponential behaviour (see Todd (2001, p. 422) for a survey). Smale (1983) and

Adler and Megiddo (1985) give a probabilistic analysis for the self-dual parametric sim-

plex algorithm, using its description as a special case of Lemke’s algorithm.

This raises the following questions in the context of games. First, what is the expected

running time of the LH algorithm? Megiddo (1986) analyzes Lemke’s algorithm for
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random general LCPs (not derived from games), and shows that its expected running time

is exponential for the standard version of Lemke’s algorithm, and quadratic for a modified

version. Bárány, Vempala, and Vetta (2005) show that with high probability, random

games have equilibria with small support, so that an equilibrium is quickly found by

support enumeration. Although this result does not concern the LH algorithm, it suggests

that random games are not “hard to solve”.

Secondly, is there a randomized variant of Lemke’s algorithm that solves our games

quickly on average? Von Stengel, van den Elzen, and Talman (2002) use a covering vector

derived from a starting pair of mixed strategies to solve two-player games with Lemke’s

algorithm, and give a game-theoretic interpretation of the resulting path. The starting

pair can be chosen randomly. Section 4.8 shows that more general random choices of the

covering vector are also possible (which is true for any LCP).

For the same model of random input data used by Smale (1983), Megiddo (1986)

shows that the expected running time of Lemke’s algorithm is exponential when the cov-

ering vector is (1, . . . ,1)⊤, but quadratic when the covering vector is (ε,ε2, . . . ,εn)⊤. If

d = −q, degeneracy resolution must be used, since the path will go through the origin,

which is in every complementary cone. By using appropriate lexicographic degeneracy

resolution, it may be possible to emulate the good behaviour that results from the cov-

ering vector (ε,ε2, . . . ,εn)⊤, used by Megiddo. Such a starting point has the advantage

that ray termination is not possible. Initial empirical evidence is encouraging, and this

certainly deserves further theoretical study. An obvious related question is how the games

constructed in this thesis are solved by such an algorithm. If the algorithm performs well

in these cases, the natural question is whether there are hard instances for such an al-

gorithm, i.e. Lemke’s algorithm with d = −q and appropriate lexicographic degeneracy

resolution. Furthermore, when lexicographic degeneracy resolution is used the algorithm

will depend on the order of the rows (or equivalently the order of the powers in the lexico-

graphic covering vector), so randomly permuting the payoff matrices is another possibility

for achieving good expected running times.

A related paper is Megiddo (1985), which discusses how the parametric self-dual

simplex method with different starting points, which corresponds to Lemke’s algorithm

91



with different covering vectors, can reproduce seemingly different algorithms, such as the

variable dimension algorithm of van der Heyden (1980).

A different open problem is how to generate “numerically stable” game matrices with

our construction. We use cyclic polytopes, using points on the moment curve, which give

rise to notoriously ill-conditioned matrices. As a consequence, numerical problems arise

when the pivoting steps are implemented using floating-point arithmetic. It would be good

to have “hard instances” of games without this additional complication. These numerical

problems may possibly be avoided by using points on the so-called trigonometric moment

curve (see Ziegler (1995, p. 75f) or Grünbaum (2003, p. 67)). An open question is the

required numerical accuracy of these points.

The recent claim by Chen and Deng (2005b) that NASH is PPAD-complete, in con-

junction with the results of Hirsch, Papadimitriou, and Vavasis (1989), suggests that is

unlikely that a polynomial-time algorithm exists for NASH. In any case, since not even

a subexponential algorithm is known for NASH, the existence of such an algorithm is an

intriguing open question.

A well-known open problem is the following: Given a matrix M and a vector q, ei-

ther find a solution to the LCP (M,q), or display a proof that M is not a P-matrix. This

problem is, like NASH, in PPAD; the reduction to END OF THE LINE uses Lemke’s al-

gorithm, which will find a solution to the LCP (M,q) if M is a P-matrix (ray termination

proves that M is not a P-matrix). As for any problem in TFNP, if the problem is NP-

hard then NP = co-NP (Megiddo (1988) and Megiddo and Papadimitriou (1991)). The

computational complexity of this problem is an intriguing open question. Is this problem

PPAD-complete? The problem of deciding if a matrix is not a P-matrix is NP-complete

(Coxson (1994)).
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Appendix A

A.1 Generating game matrices for Γ(d,d)

In this appendix, we describe how to obtain games from representations of cyclic poly-

topes. In principle, this has already been described in Proposition 2.1 of von Stengel

(1999) for general polytopes. In our case, as well as in the construction of games with a

large number of equilibria in von Stengel (1999), the polytopes are dual cyclic polytopes

in dimension d with 2d facets, with a labelling of the facets of each polytope that has a

certain structure. This structure allows a further simplification: Only one of dual cyclic

polytopes, say P, has to be brought into the form (2.4), where d of the inequalities are

simply nonnegativities and the other d inequalities define the payoff matrix of one player,

here B. The other polytope, and thus the payoff matrix A of the other player, is then sim-

ply obtained by a suitable permutation of the rows and columns of B⊤. We first explain

this construction, which is summarized in Proposition A.1 below.

Secondly, we apply this to a representation of cyclic polytopes in dimension d =

6 derived from the so-called trigonometric moment curve. In this low dimension, the

coordinates on that curve can be approximated by small integers, which gives rise to

small game matrix entries.

As indicated at the beginning of Section 3.2, a standard way of obtaining a cyclic poly-

tope in dimension d with 2d vertices is, first, to consider 2d points µ(ti) on the moment

curve µ : t 7→ (t, t2, . . . , td)⊤ for 1 ≤ i ≤ 2d. Suppose that t1 < t2 < · · · < t2d . Then the

vertices of that polytope are characterized by the 0-1 strings fulfilling the Gale evenness

condition. The polar (or dual) polytope (see see Ziegler (1995) or Grünbaum (2003)) is

obtained by translating the polytope so that it has the origin 0 in its interior, for exam-
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ple by subtracting the arithmetic mean µ of the points µ(ti) from each such point. The

resulting vectors ci = µ(ti)−µ then define the polar cyclic polytope

P′ = {z ∈ Rd | c⊤i z≤ 1, 1≤ i≤ 2d }. (A.1)

As described in von Stengel (1999, p. 560), if P′ = {z ∈Rd |Cz≤ 1, Dz≤ 1} with d×d

matrices C and D, then an affine transformation of P′ is given by

P = {x ∈ Rd | x≥ 0, −DC−1x≤ r} , r = 1−DC−11. (A.2)

Since 0 is a vertex of the simple polytope P, the vector r is positive, and the second d

inequalities in (A.2) can be re-normalized so that the right hand side is one. With the

diagonal matrix S with entries sii = 1/ri with r as in (A.2), and si j = 0 for i ̸= j, we can

rewrite (A.2) as

P = {x ∈ Rd | x≥ 0, −SDC−1x≤ 1} . (A.3)

Affine transformations leave the combinatorial structure (that is, the face incidences)

of a polytope unchanged, so P is a dual cyclic polytope with vertices characterized by

Gale evenness strings. These Gale evenness strings refer to the 2d inequalities defining P

according to the ordering in (A.3), that is, x1 ≥ 0 being the first inequality obtained from

the first point µ(t1) on the moment curve, x2 ≥ 0 corresponding to µ(t2), and so on.

Consider the polytope Q defined by

Q = {y ∈ Rd | −SDC−1y≤ 1, y≥ 0} , (A.4)

which is identical to P in (A.3) except that the first and last d inequalities are interchanged.

In a dual cyclic polytope like P in (A.3), each inequality defines a facet (obtained

by converting the inequality to an equality). We say that a facet of P has label k (for

k = 1, . . . ,2d) if it corresponds to the kth inequality in the description of the polytope

in (A.3). Similarly, a facet of Q has label k if it corresponds to the kth inequality in (A.4).

If P and Q in (A.3) and (A.4) are the polytopes P and Q in (2.4), they define a symmetric

bimatrix game with payoff matrices (A,B) where B⊤ = A =−SDC−1.

The vertices of a dual cyclic polytope are given by the sets of d facets each vertex

lies on. Encoded as bitstrings, these sets are characterized by the Gale evenness condition

explained at the beginning of Section 3.2, with G(d) as the set of these bitstrings. We
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assume d is even. Then the Gale evenness condition is preserved by a cyclic rotation of

the bitstrings, in particular by d positions, as used in the definition (A.4) of Q. Thus,

the vertices of both P and Q correspond to the Gale evenness strings in the set G(d). A

bitstring u in G(d) defines the vertex x of P obtained by converting the kth inequality in

(A.3) to an equality whenever uk = 1, for k = 1, . . . ,2d. In the same manner, v in G(d)

defines the vertex y of Q where the kth inequality in (A.4) is binding whenever vk = 1.

In our construction, as well as in von Stengel (1999), the polytopes P and Q in (2.4)

are dual cyclic polytopes but the games are not symmetric, because the facets of Q are

not labelled in their original order. Instead, a certain permutation λ is used to obtain Q

from Q, by letting the kth facet of Q in the description (A.4) have label λ(k) in Q, for

k = 1, . . . ,2d. In our construction, we used the permutation λ = l′ defined in (3.3). With

λ(S) = {λ(k) | k ∈ S} for S⊆ 1, . . . ,2d, this permutation has the property

λ({1, . . . ,d}) = {1, . . . ,d} (A.5)

(and thus λ({d + 1, . . . ,2d}) = {d + 1, . . . ,2d}). This condition implies that the pair

(u,v) = e0 in (3.4) is complementary. The corresponding vertex pair of P×Q is the

artificial equilibrium (0,0). (Property (A.5) also implies that e1 in Lemma 3.3 is comple-

mentary, which defines the completely mixed equilibrium.)

The following proposition describes the construction of a bimatrix game (A,B) using

P in (A.3), and Q defined by Q in (A.4) with labels given by a permutation λ fulfilling

(A.5). The proposition shows how to obtain A from B⊤ by permuting rows and columns

suitably.

Proposition A.1 Consider a pair of dual cyclic polytopes in dimension d with 2d facets,

with each vertex set represented by the set of Gale evenness strings G(d). Let λ be a

permutation of {1, . . . ,2d} that fulfills (A.5). For k = 1, . . . ,2d, a vertex u in G(d) of the

first polytope has the labels k where uk = 1, a vertex v in G(d) of the second polytope has

the labels λ(k) where vk = 1. A vertex pair (u,v) is complementary if it has all labels.

Then a d×d bimatrix game (A,B) with Nash equilibria corresponding to complementary

vertex pairs, where the artificial equilibrium corresponds to e0 in (3.4), is given by B⊤ =

−SDC−1 as in (A.3), using a representation (A.1) of a dual cyclic polytope consistent

with the Gale evenness ordering. The matrix entries a(i, j) of A are obtained from the
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matrix entries b(i, j) of B by

a(λ(i),λ( j+d)−d) = b( j, i) (1≤ i, j ≤ d). (A.6)

Proof: For the characterization of equilibria, the combinatorial structure of the dual cyclic

polytopes suffices, as given by the Gale evenness strings G(d). Both P in (A.3) and Q

in (A.4) are representations of such polytopes. By assumption, for k = 1, . . . ,2d, the kth

inequality of (A.3) has label k, and the kth inequality of (A.4) has label λ(k).

Let B⊤ =−SDC−1, define the matrix A with entries a(i, j) by (A.6), and let

Q = {y ∈ Rd | Ay≤ 1, y≥ 0} . (A.7)

The polytopes P and Q in (A.3), (A.7) correspond to the bimatrix game (A,B), as in (2.4).

The facets of Q have labels in the order of the inequalities in (A.7). It suffices to show

that these labels k correspond to the labels λ(k) of Q stated above.

In detail, the inequalities in (A.4) are

Q = {y ∈ Rd |
d

∑
j=1

b( j, i) y j ≤ 1 (1≤ i≤ d),

y j ≥ 0 (1≤ j ≤ d) } .
(A.8)

For 1≤ j≤ d, the (d+ j)th inequality in (A.8) has label λ(d+ j). Hence, it should appear

as the λ(d+ j)th inequality in (A.7), which by (A.5) is the inequality yλ(d+ j)−d ≥ 0. This

is achieved by the correspondence between y in (A.7) and y in (A.8) given by yλ(d+ j)−d =

y j.

The ith of the first d inequalities in (A.8), for 1≤ i≤ d, has label λ(i). It should appear

as the λ(i)th inequality in (A.7). That inequality has the form

d

∑
l=1

a(λ(i), l) yl ≤ 1 ,

which by (A.5) can be rewritten as

d

∑
j=1

a(λ(i),λ(d + j)−d) yλ(d+ j)−d ≤ 1 ,

which by (A.6) is the ith inequality of (A.8) as claimed.
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Consider the following 6×6 bimatrix game (A,B) with

A =



−180 72−333 297−153 270

−30 17 −33 42 −3 20

−81 36−126 126 −36 90

90 −36 126−126 36 −81

20 −3 42 −33 17 −30

270−153 297−333 72−180



, B =



72 36 17 −3 −36−153

−180 −81−30 20 90 270

297 126 42−33−126−333

−333−126−33 42 126 297

270 90 20−30 −81−180

−153 −36 −3 17 36 72



.

The matrix A is obtained from B via (A.6) with λ = l′ in (3.3). The matrix B is obtained

as in Proposition A.1. The underlying representation (A.1), however, is not based on

points (t, t2, t3, t4, t5, t6) of the moment curve, but on points ν(t) of the trigonometric

moment curve, ν(t) = (cos t,sin t,cos2t,sin2t,cos3t,sin3t). These points also give rise

to cyclic polytopes (see Ziegler (1995, p. 75f) or Grünbaum (2003, p. 67)). For t = iπ/6

for i= 1, . . . ,12, the first pair of coordinates of ν(t) denote the vertices of a regular 12-gon,

the second pair those of a regular hexagon, used twice, and the third pair those of a square,

used three times. The origin is in the interior of the convex hull of these vertices, so the

polytope does not have to be translated to obtain its polar. The combinatorial structure is

preserved by choosing suitable integer coordinates near the points on the circle, which are

shown in Figure A.1; payoffs have been multiplied by 18 to obtain integers. (The square

is represented perfectly; choosing as its vertices instead the points (1,0), (0,1), (−1,0),

(0,−1), say, would not change B as the affine transformation that produces (A.2) always

gives the unit vectors as the normal vectors of the first d facets of P.) It is an open problem

to find suitable approximations with small integers in higher dimensions that preserve the

combinatorial structure.
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The bimatrix game (A′,B) with

A′ =



−81 36−126 126 −36 90

−180 72−333 297−153 270

20 −3 42 −33 17 −30

−30 17 −33 42 −3 20

270−153 297−333 72−180

90 −36 126−126 36 −81


is obtained from the permutation λ(k) = k− (−1)k for 1≤ k ≤ 12 in (A.6). This permu-

tation is used in von Stengel (1999), and the game (A′,B) has 75 equilibria.

8 11
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7 12

1
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(4,1)

(4,−1)  

(3,3)
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(−1,−4)

(1,4)

(1,−4)

1

2
3

4

5
6
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(1,4)

(4,1)

(3,−3)

(−4,−1)

(−1,−4)

(−3,3)

15

2
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10

4

8

12
7 113

9 (4,1)

(1,−4)

(−4,−1)

(−1,4)

Figure A.1 Approximation of points on the trigonometric moment curve by small integers. The

circled numbers refer to the labels i = 1, . . . ,12 of the vertices, which become facets

in the dual cyclic polytope P.
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A.2 Examples of path lengths and paths

The following figures show the empirical evidence leading to Theorems 3.9, 3.10, and

3.15. Figure A.2 shows the path lengths and their exponential growth, and that the lengths

of the short paths π(d,3d/2) for d = 2,4,6, . . . are given by the Fibonacci numbers times

two, with every third Fibonacci number omitted. Figures A.5, A.9, A.8, (which appeared

in a different format in Section 3 as Figures 3.3, 3.5, and 3.4 respectively) and A.10

illustrate Theorem 3.9, and Figures 8, 13, and 14 show cases of Theorem 3.10.
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A.2.1 LH path lengths for Γ(d,d) and Γ(d,2d)

Γ(d,d)
label d

2 4 6 8 10
1 4 20 88 376 1596
2 4 8 24 92 380
3 4 8 24 92 380
4 4 20 24 40 108
5 10 24 40 108
6 10 88 92 108
7 10 36 92 108
8 10 36 376 380
9 16 146 380
10 16 146 1596
11 36 42 612
12 36 42 612
13 42 152
14 42 152
15 146 68
16 146 68
17 152
18 152
19 612
20 612
21
22
23
24
25
26
27
28
29
30

Γ(d,2d)
label d

2 4 6 8 10
1 4 20 88 376 1596
2 4 8 24 92 380
3 5 8 24 92 380
4 4 20 24 40 108
5 4 21 24 40 108
6 5 10 88 92 108
7 21 89 92 108
8 10 36 376 380
9 10 89 377 380

10 21 16 146 1596
11 10 89 377 1597
12 21 36 42 612
13 36 377 1597
14 89 42 152
15 16 377 1597
16 89 146 68
17 36 146 1597
18 89 377 152
19 42 1597
20 377 612
21 42 612
22 377 1597
23 146 152
24 377 1597
25 68
26 1597
27 152
28 1597
29 612
30 1597

Figure A.2 LH path lengths of Γ(d,d) and Γ(d,2d) for different missing labels.
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A.2.2 Sample LH paths for Γ(d,d)

In the following figures, each row displays two pivoting steps, one in P and one in Q, so

the number of the last row is to be multiplied by two to obtain the path length.

1 2 3 4 1 2 4 3

0 1 1 0 0 0 0 1 1

1 0 1 1 0 0 1 1 0

2 0 0 1 1 1 1 0 0

Figure A.3 The path π(2,1)

1 2 3 4 1 2 4 3

0 1 1 0 0 0 0 1 1

1 0 1 1 0 1 0 0 1

2 0 0 1 1 1 1 0 0

Figure A.4 The path π(2,4)

1 2 3 4 5 6 7 8 1 3 2 4 6 5 8 7

0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1

2 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1

3 0 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1

4 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0

5 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0

6 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0

7 0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0

8 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0

9 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 0

10 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

Figure A.5 The path π(4,1)
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1 2 3 4 5 6 7 8 1 3 2 4 6 5 8 7

0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0 1 1 0 0 0 1 1 0 1

2 0 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0

3 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 0

4 1 0 0 0 0 1 1 1 0 1 1 0 0 1 1 0

5 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0

6 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 1

7 0 1 1 0 1 1 0 0 1 1 0 0 0 0 1 1

8 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1

9 1 0 0 0 1 1 0 1 1 1 1 0 0 0 0 1

10 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

Figure A.6 The path π(4,4)

1 2 3 4 5 6 7 8 1 3 2 4 6 5 8 7

0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

1 0 1 1 1 1 0 0 0 1 0 0 0 1 1 0 1

2 0 1 1 0 1 1 0 0 1 0 0 1 1 0 0 1

3 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1

4 0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1

5 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

Figure A.7 The path π(4,8)

1 2 3 4 5 6 7 8 9 10 11 12 1 3 2 5 4 6 8 7 10 9 12 11

0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1

2 0 1 1 1 1 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1

3 0 1 1 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1

4 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 1

5 0 1 1 0 1 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1

6 0 1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1

7 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 0 0 1

8 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1

9 0 1 1 0 0 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1

10 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 0 0 1

11 0 0 1 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 0 0 0 1

12 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 0 0 1

13 0 0 1 1 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 0 1

14 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1

15 0 0 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 1 0 0 0 0 1

16 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 1

17 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 1

18 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

Figure A.8 The path π(6,12)
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1 2 3 4 5 6 7 8 9 10 11 12 1 3 2 5 4 6 8 7 10 9 12 11

0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1

2 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1

3 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1

4 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1

5 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1

6 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1

7 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1

8 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 1

9 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1

10 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1

11 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1

12 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1

13 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1

14 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1

15 0 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1

16 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1

17 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 0

18 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 0

19 0 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

20 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 1 1 0

21 0 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 1 0

22 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0

23 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0

24 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0

25 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0

26 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0

27 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0

28 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0

29 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 1 1 1 1 0 0

30 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0

31 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0

32 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0

33 0 0 1 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0

34 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0

35 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0

36 0 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0

37 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0

38 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 0 0

39 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0

40 0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0

41 0 0 0 1 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 0

42 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 0

43 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0

44 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

Figure A.9 The path π(6,1)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 3 2 5 4 7 6 8 10 9 12 11 14 13 16 15

0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1

2 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1

3 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1

4 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1

5 0 1 1 1 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 1 1 0 1

6 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1

7 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1

8 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1

9 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 1 1 0 1

10 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1

11 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1

12 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1

13 0 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1

14 0 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1

15 0 1 1 0 0 1 1 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 1

16 0 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1

17 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 1

18 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1

19 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 1

20 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

21 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1

22 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1

23 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1

24 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1

25 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1

26 0 1 1 1 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1

27 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1

28 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1

29 0 1 1 1 1 0 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1

30 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1

31 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1

32 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1

33 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 1

34 0 1 1 0 1 1 1 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1

35 0 1 1 0 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1

36 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1

37 0 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1

38 0 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 0 0 1

39 0 1 1 0 0 0 1 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1

40 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1

41 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1

42 0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 1

43 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1

44 0 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1

45 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1

46 0 0 1 1 0 0 0 1 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 1

47 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 1

48 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1

49 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1

50 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1 0 0 0 0 1

51 0 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 1

52 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 0 1

53 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1

54 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1

55 0 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1

56 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1

57 0 0 0 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1

58 0 0 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1

59 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1

60 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1

61 0 0 0 1 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1

62 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1

63 0 0 0 1 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1

64 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 1

65 0 0 0 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1

66 0 0 0 0 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 1

67 0 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 1

68 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 1

69 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 1

70 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1

71 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1

72 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1

73 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Figure A.10 The path π(8,16)

104



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 3 2 5 4 7 6 9 8 10 12 11 14 13 16 15 18 17 20 19

0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1

2 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0

3 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0

4 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0

5 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0

6 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1

7 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1

8 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1

9 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1

10 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

11 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0

12 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0

13 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0

14 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0

15 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0

16 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0

17 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0

18 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0

19 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0

20 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0

21 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0

22 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0

23 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0

24 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0

25 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0

26 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0

27 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0

28 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0

29 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0

30 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0

31 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0

32 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0

33 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0

34 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0

35 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0

36 0 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0

37 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0

38 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

39 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0

40 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0

41 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0

42 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0

43 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0

44 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0

45 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0

46 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0

47 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0

48 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0

49 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0

50 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0

51 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0

52 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0

53 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

54 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Figure A.11 The path π(10,4)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 3 2 5 4 7 6 9 8 10 12 11 14 13 16 15 18 17 20 19

0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1

2 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1

3 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1

4 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1

5 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1

6 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1

7 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1

8 0 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0

9 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1

10 1 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1

11 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1

12 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1

13 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0

14 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0

15 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0

16 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0

17 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1

18 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1

19 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1

20 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1

21 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0

22 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 1 0 1 1 0 0 0 0 0 1 1 0 0 0 1

23 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 1 1 0 0 1 1

24 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 0 1 1

25 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 1

26 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0

27 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0

28 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0

29 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0

30 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 1

31 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1

32 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1

33 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1

34 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0

35 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0

36 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0

37 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0

38 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 1 1 1

39 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1

40 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1

41 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1

42 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0

43 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1

44 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1

45 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1

46 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1

47 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0

48 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0

49 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0

50 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0

51 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1

52 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1

53 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1

54 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1

55 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0

56 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1

57 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1

58 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1

59 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1

60 1 1 0 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1

61 1 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1

62 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1

63 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0

64 1 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1

65 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1

66 1 1 1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1

67 0 1 1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1

68 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0

69 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0

70 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0

71 0 1 1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0

72 0 1 1 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1

73 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1

74 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1

75 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1

76 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Figure A.12 The path π(10,14)
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A.2.3 Sample LH paths for Γ(d,2d)
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Figure A.13 The path ρ(4,1)
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Figure A.14 The path ρ(4,4)
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Figure A.15 The path ρ(4,5)
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Figure A.16 The path ρ(4,12)

A.2.4 Lemke path lengths for Morris’s construction

Morris’s construction was for both even and odd dimension; here we only give path

lengths for even dimension.

label dimension
2 4 6 8 10

1 2 6 16 40 98
2 2 4 8 18 42
3 4 8 18 42
4 6 8 12 22
5 8 12 22
6 16 18 22
7 18 22
8 40 42
9 42

10 98

Figure A.17 Lemke path lengths for Morris’s construction in even dimension.

A.2.5 Sample Lemke paths for Morris’s construction

1 2 3 4 4 2 3 1

0 1 1 1 1 0 0 0 0

1 0 1 1 1 1 0 0 0

2 0 1 1 0 1 1 0 0

3 0 0 1 1 1 1 0 0

4 0 0 1 1 0 1 1 0

5 0 0 0 1 1 1 1 0

6 0 0 0 0 1 1 1 1

Figure A.18 The Lemke path of Morris in dimension 4 with missing label 1.
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1 2 3 4 5 6 6 4 5 2 3 1

0 1 1 1 1 1 1 0 0 0 0 0 0

1 0 1 1 1 1 1 1 0 0 0 0 0

2 0 1 1 1 1 0 1 1 0 0 0 0

3 0 1 1 0 1 1 1 1 0 0 0 0

4 0 1 1 0 1 1 0 1 1 0 0 0

5 0 1 1 0 0 1 1 1 1 0 0 0

6 0 1 1 0 0 0 1 1 1 1 0 0

7 0 0 1 1 0 0 1 1 1 1 0 0

8 0 0 1 1 0 1 1 0 1 1 0 0

9 0 0 1 1 1 1 0 0 1 1 0

10 0 0 1 1 1 1 0 0 0 1 1 0

11 0 0 0 1 1 1 1 0 0 1 1 0

12 0 0 0 1 1 0 1 1 0 1 1 0

13 0 0 0 0 1 1 1 1 0 1 1 0

14 0 0 0 0 1 1 0 1 1 1 1 0

15 0 0 0 0 0 1 1 1 1 1 1 0

16 0 0 0 0 0 0 1 1 1 1 1 1

Figure A.19 The Lemke path of Morris in dimension 6 with missing label 1.

A.3 Number of equilibria of games Γ(d,2d)

The figure and formulas in this section are from von Stengel (1999), and are given here for

convenience; see Lemma 3.14. In Figure A.20 we give the values of σ and σ̃(l) for small

values of d = 2l, which correspond to the number of equilibria in the games Γ(d,2d).

d 0 2 4 6 8 10 12 14 16

σ(l) 1 3 13 63 321 1683 8989 48639 265729

σ̃(l) 3.4 13.8 65.5 330.4 1722.6 9165.3 49456.6 269636.8

Figure A.20 The first values of σ(l) and σ̃(l), where σ(l) is the number of equilibria in a game

Γ(d,2d), l = d/2, and σ̃(l) an asymptotic approximation of σ(l) from von Stengel

(1999).

Now we reproduce the corresponding equations for σ(l) and σ̃(l). The first is (3.6)

from von Stengel (1999), and the second appears on page 566 of the same paper, without

an equation number.

σ(l) =
l

∑
k=0

(l + k)!
k!k!(l− k)!

=
l

∑
k=0

(
l + k

k

)(
l
k

)
,

σ(n)∼ σ̃(n) :=
1+
√

2
25/4√π

(1+
√

2)2n
√

n
.
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Index of Symbols

Symbol Description Page

0 column vector of all 0s 19

1 column vector of all 1s 19

A(d) subpath of LH path π(d,1) 39

A, B payoff matrices for player 1 and 2 17

B(d) subpath of LH path π(d,2d) 35

C payoff or cost matrix for player 1 in a symmetric game 18

C(d) subpath of LH path π(d,1) 39

d dimension (also see next entry) 18

d covering vector for Lemke’s algorithm (also see previous entry) 71

ek unit vector, with component k equal to 1, and all others 0 68

F LCP map 79

G(d, f ) set of Gale even bitstrings of length f with d ones 31

G(d) abbreviates G(d,2d) 33

Γ(m,n) m×n double cyclic polytope game 32

ΓM(d) d×d symmetric game derived from Morris’s construction 57

I identity matrix 71

λ permutation of labels 95

l(k) facet labelling function 32

l′(k) facet labelling function 32

l′′(k) facet labelling function 61

L(d,k) length of LH path for Γ(d,d) with missing label k 33

LCP (M,q) linear complementarity problem with rhs q and matrix M 20

M LCP matrix 20

Mi ith column of matrix M 79

M(d,k) length of LH path for Γ(d,2d) with missing label k 50

n LCP dimension 20
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P′′ dual cyclic polytope 30

P, Q best response polytopes P and Q 22

π(d,k) the LH path for Γ(d,d) with missing label k 33

q LCP rhs 20

ρ(d, j) the LH path for Γ(d,2d) with missing label j 51

T(d) triple imitation game in dimension d 60

S best response polytope for symmetric game 18

u,v bitstrings 32

w LCP vector of slack variables 20

W best response polyhedron for symmetric game defined by costs 68

z LCP vector of variables 20
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